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ABSTRACT  

    Noble metal nanoparticles have been of tremendous interest because of their intriguing 

size- and shape-dependent plasmonic and catalytic properties. The combination of 

tunable plasmon resonances with superior catalytic activities on the same nanoparticle, 

however, has long been challenging because plasmonics and catalysis require 

nanoparticles in two drastically different size regimes. Tunable plasmon resonances is a 

unique feature of sub-wavelength metallic nanoparticles, whereas heterogeneous catalysis 

requires the use of sub-5 nm nanoparticles as the catalysts. In this dissertation, I firstly 

found a unique way to bridge this size gap between nanoplasmonics and nanocatalysis. I 

demonstrated that desired plasmonic and catalytic properties can be integrated on the 

same particle by controllably creating high energy facets on individual sub-wavelength 

metallic nanoparticles, such as, porous Au nanoparticles, Au nanocrystals enclosed by 

well-defined high-index facets, multi-faceted Au and bimetallic nanorods. The 

capabilities to both nanoengineer high energy facets and fine-tune the plasmon 

resonances through deliberate particle geometry control allow us to use these 

nanoparticles for a dual purpose: as substrates for plasmon-enhanced spectroscopies and 

efficient surface catalysts. Such dual functionality enables us to gain quantitative insights 

into the facet-dependent molecular transformations on metallic nanocatalysts using 

surface-enhanced Raman spectroscopy (SERS) as an ultrasensitive spectroscopic tool 

with unique time-resolving and molecular finger-printing capabilities. 
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    More recently, I further expanded my research interest into plasmonic hot electron-

driven photocatalytic reactions. I focused on the quantitative understanding of the 

kinetics and underlying pathways of plasmon-driven photocatalysis. I used SERS to 

precisely monitor, in real time, the plasmon-driven photoreaction kinetics at the 

molecule-nanoparticle interfaces. The reductive dimerization of 4-nitrothiophenol and 

oxidative coupling of thiophenol-derivates were chosen as model reactions to explore the 

effects of plasmon excitations, molecular adsorption states, local field enhancements, and 

photothermal processes, on the plasmon-driven photocatalytic reactions. 

    In summary, the goal of this dissertation is to gain new insights on interfacial 

molecular transformation kinetics and underlying mechanism of heterogeneous catalysis 

and plasmon-driven photocatalysis using in situ plasmon-enhanced spectroscopic tool for 

guiding rational design of high performance metallic nanocatalysts and photocatalysts 

toward environmental and energy application. 
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1.1 Localized Surface Plasmon Resonance of Metallic Nanoparticles 

Localized surface plasmon resonances (LSPRs) is known as the collective oscillations of 

free electrons on metal surfaces upon light excitation, which contributes to the fascinating 

optical characteristics of metallic nanoparticles (Figure 1.1A).
1,2 

When a metal 

nanoparticle is excited to generate surface plasmons at its eigenfrequency upon light 

excitation, the incident light is both absorbed and scattered, giving rise to vivid colors.
3
 

The beautiful colors of colloidal metal nanoparticles has been an object of fascination 

back to ancient times. The famous Lycurgus Cup is one of the oldest examples. This 

glass cup exhibits a striking red color when light is shone into the cup and transmitted 

through the glass, and it appears green while viewed in reflected light. This particular 

behavior is essentially due to the small Au-Ag bimetallic nanoparticles embedded in the 

glass, which show a strong optical absorption of light in the green part of the visible 

spectrum. Although these optical characteristics of metallic nanoparticles have been 

known and used for centuries, our scientific understanding on the origin of these optical 

properties has emerged far more recently, beginning with the development of classical 

electromagnetic theory. Gustav Mie firstly applied Ma well’s equations to explain the 

strong absorption of green light by a Au nanosphere under plane wave illumination about 

a century ago,
4
 which established the rigorous scientific foundation for our understanding 

on the LSPRs-dominated intriguing optical properties of metallic nanoparticles. The past 

decades have witnessed significant advances in scientific understanding of the origin of 

the optical tunability of metallic nanoparticle systems, primarily driven by the rapid 

advances in the geometry-controlled nanoparticle fabrication and assembly and 

electrodynamics modeling of nanoparticle systems.
1,3,5,6
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    The unique optical features of LSPRs can be well displayed by far-field extinction 

spectral feature and the near-field enhancement.
2,6

 The far-field extinction properties are 

measured by optical extinction spectroscopy to show the maximized excitation of surface 

plasmons at specific frequencies/wavelengths (Figure 1.1B). On the other hand, the 

significant enhanced local electric field induced by collective oscillation of free electrons 

would greatly increase the molecular optical cross-section when molecules are adsorbed 

onto the surfaces of metallic nanoparticles (Figure 1.1C).
2,7,8

 Both the far-field and near-

field optical properties of metallic nanoparticles could be simulated based on either 

analytic methods (Mie scattering theory and the Gans model) or numerical methods 

(discrete dipole approximation (DDA) and finite-difference time-domain (FDTD)).
2,6

 

Remarkably, by judiciously tailoring the geometries of the metal nanoparticles, one can 

fine-tune the optical resonance frequencies and optimize the electric near field 

enhancements associated with the plasmonic excitations.
2-6

 Expanding the plasmonic 

tunability of nanoparticles over a broad spectral range is of paramount importance 

because it opens up a whole set of new opportunities for photonic,
2,9

 optoelectronic,
9 

spectroscopic,
7,10 

and biomedical applications.
11-13 

This has, in turn, stimulated rapidly 

growing interests in a variety of metallic nanostructures with geometrically tunable 

optical properties, such as nanorods,
5,14 

nanoprisms,
15 

nanoshells,
2,12,16 

and nanocages.
11,17
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Figure 1.1 (A) Localized surface plasmon resonance (LSPR) of metal nanosphere upon light 

excitation, showing the displacement of the conduction electron charge cloud relative to the 

nuclei. (B-C) The far-field optical extinction spectra (B) and the calculated near-field 

enhancement (C) of the corresponding Au nanospheres with the diameter size of 40 nm. 

 

1.2 Surface-enhanced Raman Scattering (SERS) 

The physical phenomenon of Raman spectroscopy is inelastic scattering of photons from 

a molecule with quantifiable vibrational signals, which was first observed by Raman in 

1928.
18

 Although Raman spectroscopy could provide rich information of a molecule, it 

has not become a very common tool for analysis when comparing to Infrared and UV-Vis 

spectroscopy. It is the weak signal intensity that limited the development of Raman 

spectroscopy. The weak signal can be attributed to the very low Raman scattering cross 

section for most of molecules, generally more than 10 orders of magnitude lower than 

that of infrared absorption.
19

 

    The Raman signal was significantly enhanced after the discovery of SERS in mid-
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1970s.
20-22 

In 1974, Fleischmann, Hendra and McQuillan first reported the measurement 

of a surface Raman spectrum with intense Raman signal from pyridine adsorbed on an 

electrochemically roughened Ag electrode.
20

 Although Fleischmann et al. first discovered 

the phenomenon, the SERS effect was not really recognized as such at that time. After 

that, both Van Duyne and Creighton reported the similar results independently in 

1977.
21,22

 They provided strong evidences to show that the intense Raman signal was 

caused by a special enhancement of the Raman scattering efficiency itself but not be 

accounted for simply by the increase in the number of scatterers. Thus, the effect was 

what we called surface-enhanced Raman scattering (SERS) now. Interestingly, Van 

Duyne and Creighton proposed different SERS mechanisms in their papers. Van Duyne 

proposed an electromagnetic (EM) enhancement mechanism,
22 

while Creighton 

speculated that resonance Raman scattering from molecular electronic states was 

broadened by their interaction with the metal surface, which is called charge-transfer 

(chemical enhancement) mechanism.
21

 Since they are both right in concept, the exact 

mechanism of SERS is still in debate until now. 

    SERS is essentially a nanoscale effect directly related to the intense electromagnetic 

field enhancements generated at nanostructured metallic surfaces upon the excitation of 

LSPRs, which also represents an ultrasensitive vibrational spectroscopic technique 

capable of providing detailed structural information of the molecules on or in the vicinity 

of nanostructured metallic surfaces.
23-25

 As a powerful, non-invasive spectroscopic tool 

for the detection of low-abundance analytes, SERS plays pivotal roles in food safety 

inspection,
26,27

 environmental monitoring,
28

 and biomolecular sensing.
29-32

 By combining 

plasmonic metallic nanoparticles with molecular Raman reporters, multifunctional SERS 
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nanoprobes, or SERS tags, have been developed to target specific biomolecules both in 

vitro and in vivo, enabling Raman-based optical bioimaging with high spatial resolution 

and excellent photostability.
33-37

  
    One of the most important factors that significantly affect the wide application of 

SERS is the lack of reliable, reproducible, and high-performance SERS substrates. Due to 

strong plasmonic coupling effects,
38

 aggregated or self-assembled metallic nanoparticles 

possess “hot spots” for S RS inside the sub-10 nm interparticle gaps with gigantic field 

enhancements several orders of magnitude higher than those commonly achievable on the 

individual nanoparticles.
38-42

 However, the challenges associated with precise control 

over the spatial distribution, enhancement magnitude, and structural robustness of the 

interstitial hot spots limit the utilization of the nanoparticle aggregates as reliable and 

reproducible SERS substrates for sensing and imaging applications. Therefore, single-

particle SERS (spSERS) represents a more promising approach to SERS-based sensing 

and imaging with optimizable signal amplification and reproducibility in comparison to 

those strategies relying on the nanoscale interparticle junctions. The plasmonic field 

enhancements of individual nanoparticles can be optimized through deliberate control 

over particle geometries.
25,43,44

 A widely used strategy of achieving intense field 

enhancements on the outer surfaces of individual nanoparticle is to controllably introduce 

nanoscale tipped or spiky features to the particle surfaces.
45-57

 Upon plasmonic excitation, 

the electromagnetic fields are enormously enhanced at the surface vertices and edges, 

providing SERS hot spots on open surfaces that are easily accessible by molecules. A 

variety of Au or Ag nanoparticles with tipped surface features, such as surface-textured 

nanospheres,
45-50

 etched nanopolyhedra,
51

 multi-branched nanostars,
52-55

 and spiky 
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nanoshells,
56,57

 have all been shown to exhibit intense SERS enhancements on individual 

particles, convincingly demonstrating that the interparticle or intraparticle gap geometries 

are not always essential for strong SERS enhancements. 

1.3 SERS Studies of Surface-Catalytic Reaction 

As is well-known, the interaction between molecules and the surface of metallic 

nanoparticles would greatly affect the SERS pattern. In turn, the variation in the SERS 

pattern might be used as evidence for studying the change in the local chemical 

environment, such as, surface coverage of adsorbate, molecular orientations, and the 

formation of new chemical bonds or new molecules.
58

 For example, a change in the 

orientation of 4-mercaptobenzoic acid was found by studying the SERS spectra during 

the formation of the hotspot.
59

 Another example is that SERS could be used to monitor 

the conformation of cysteamine molecules on silver because different conformations have 

different orientation-dependent Raman scattering.
60

 Since we could get abundant 

information of the species on the surface from the SERS, it is undoubted that we can use 

SERS to analysis the surface catalytic reaction in real time. 

    SERS provides an unique approach to the in situ monitoring of molecular 

transformations in heterogeneous catalysis with high detection sensitivity, excellent 

surface selectivity, and rich molecular structural information.
61-67

 By measuring the SERS 

signals from the monolayer molecules pre-adsorbed on the nanocatalyst surfaces, 

unraveling the intrinsic kinetics and mechanisms of surface-catalyzed reactions becomes 

possible with minimal complication introduced by the surface-capping ligands as well as 

the diffusion, adsorption, and desorption of reactants and products. The unique capability 

of SERS to resolve detailed molecular structures further enables the identification of 
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transient intermediates along the reaction pathways.
64,65

 Using SERS to directly monitor 

catalytic reactions on Au nanocatalysts, however, has been challenging because SERS 

and catalysis require Au nanoparticles in two drastically different size regimes. SERS 

relies on the generation of intense plasmon-field enhancements in close proximity to the 

particle surfaces,
68-70

 which are not achievable on the catalytically active sub-5 nm Au 

nanoparticles. While Au nanoparticles in the subwavelength size regime exhibit strong 

plasmon resonances and intense local fields that can be harnessed for SERS, they are no 

longer catalytically active. Therefore, the combination of strong, tunable plasmon 

resonances and superior catalytic activities on the same nanoscale entity remains 

challenging essentially due to the two drastically different size regimes required for 

nanoplasmonics and nanocatalysis, respectively. 

    It has been recently demonstrated that the in situ monitoring of surface-catalyzed 

reactions by SERS becomes possible when catalytically active small nanoparticles of Au, 

Pt, or Pd and plasmonically active large Au nanoparticles are hierarchically assembled 

into three-dimensional multilayered complex superstructures.
61-64,66 For example, Wong 

and Halas combined the catalytically responsive and SERS effect into a single substrate 

by depositing Pd onto Au nanoshells.
61 With Pd islands grow on Au nanoshells, the 

hybrid SERS substrate can be used to study the catalytic hydrodechlorination of 1,1-

dichloroethene (1,1-DCE) in H2O. Based on the results from SERS, several surface 

intermediates of 1,1-DCE were proposed and direct evidence of the room-temperature 

catalytic hydrodechlorination of 1,1-DCE were provided, which greatly helps us to 

understand the underlying reaction mechanism. Another interesting example is that 

raspberry-like Au/Pt/Au core/shell nanoparticles with high density of catalytic-active 
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sites from Pt and strong plasmon resonance from Au were used to study the Pt-catalyzed 

reaction.
63

 Reducing the NO2 group (R-NO2) to the corresponding NH2 group (R-NH2) 

through an azo intermediate by NaBH4 was demonstrated by using SERS. Figure 1.2 

clearly indicates that the SERS signal of azo initially enhances and then finally decreases 

with the increase of the amounts of NaBH4. The results from SERS provided us the direct 

evidence on the existence of the azo intermediate. The structural complexity of these 

bifunctional hybrid particles, however, makes it challenging to directly correlate the 

surface structures with the catalytic activities of the nanocatalysts. With the rapid 

development of nanotechnology, the fabrication of nanomaterials with both SERS 

activity and catalysis property become possible, which would greatly help us to further 

study and understand the mechanisms of surface-catalytic reactions. 

 

Figure 1.2 SERS spectra recorded during the Pt-catalyzed hydride reduction of an aromatic nitro 

compound, using different amounts of the reducing reagent NaBH4. Reprinted with permission 

from reference 63.
63

 Copyright 2013 American Chemical Society. 
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1.4 Plasmon-Driven Photocatalysis 

After the excitation of plasmon resonance under light illumination, the energy 

transferred from light wave to plasmon resonance.
71

 The lifetime of the coherent electron 

oscillation induced by plasmon excitation is extremely fast, typically at ∼5-100 fs.
72

 

There are three main plasmon decay pathways (Figure 1.3):
71-74

 (1) Elastic radiative re-

emission of photons, also known as scattering; (2) Landau damping: giving rise to the 

formation of energetic electrons and holes pairs in the metal particle; (3) Chemical 

interface damping (CID): the interaction of excited surface plasmons with unpopulated 

adsorbate acceptor states, leading to the direct energetic electron injection into the 

adsorbate acceptor states. In contrast to CID pathway, if none of proper unpopulated 

adsorbate acceptor states are presented for energetic electron injection, the energetic 

electrons generated through Landau damping would undergo thermal dissipation process 

(electron-phonon coupling), resulting in local heating, also known as photothermal effect. 

While Landau damping shows much lower quantum yield than that of CID, it is much 

more sensitively dependent on the local field enhancement in comparison to CID, which 

would greatly benefit from the rational design of plasmonic nanostructure with high 

density of hot-spots. Although Landau damping and CID are intrinsically different 

mechanisms, both of them generate energetic electrons, also known as hot electrons, 

which can be probably harnessed for energy conversion and catalytic reaction.
75-80

 

Remarkably, the magnitude of field enhancement, resonant wavelength, and fraction of 

plasmon excitations decaying through these three mechanisms can be finely modulated 

by deliberately controlling the size, shape, composition, and local environment of 

plasmonic nanostructures.
1,2,6
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Figure 1.3 Schematically illustration of  three typical mechanisms of surface plasmon decay 

paths. Reprinted with permission from reference 72.
72

 Copyright 2014 American Chemical 

Society. 

 

It has been recently observed that the hot carriers generated through surface plasmon 

decay play a key role in guiding interesting photo-chemical reactions, such as 

photochromic reactions,
81

 photopolymerization,
82

 photo-reductive dimerization of 4-

nitrothiophenol (4-NTP),
83,84

 and oxidative coupling of 4-aminothiophenol (4-ATP).
85,86

 

Moreover, some important catalytic reactions, such as, ethylene epoxidation,
75,87,88

 

dissociation of H2,
77

 styrene hydrogenation,
89

 and generation of H2 via water-splitting,
90

 

were also found to be either induced or enhanced by the plasmon-driven hot carriers 

injection into the surface molecular adsorbates upon exposure to light excitation. 

Particularly, Linic and co-workers
76

 demonstrated that plasmonic silver nanostructures 

with superior visible light absorption and scattering properties, can utilize concurrently 

photons and thermal energy to drive catalytic oxidation reactions at drastically lower 

temperatures comparing to those associated with conventional thermal processes. They 
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also found that energetic hot electrons, formed via the decay of surface plasmon 

resonance on illuminated silver nanoparticles, are transferred from the silver to adsorbed 

molecular O2, allowing for activation of the O-O bond for oxidation of surface molecular 

adsorbates (Figure 1.4), for example, a commercially important epoxidation of ethylene 

to form ethylene oxide.
75,88

 This work strongly impacted and stimulated the field of 

plasmonic photocatalysis, allowing one to better understand the reactions mechanisms of 

plasmonic photocatalysis. The underlying mechanistic understanding of plasmon-

mediated photoreactions, however, still remain unclear in this current stage. Therefore, it 

is imperative to gain quantitative insights into the kinetics and underlying pathways of 

these plasmon-mediated photoreactions to fully understand the obstacles that might limit 

the wide applications of plasmonic nanostructures as high-performance photocatalysts.  

 

Figure 1.4 Unique features of plasmonic photocatalysts. (a) The schematic shows the plasmon-

mediated electron transfer from Ag to the O2 forming a transient negative ion (TNI). (b) A 

schematic of the proposed active complex of plasmonic Ag particles that can support a super-

linear rate is shown. Reprinted with permission from reference 88.
88

 Copyright 2012 Nature 

Publishing Group. 
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To more efficiently harness the plasmon resonance for catalytic and photocatalytic 

reaction, two key factors need to be considered in advance. The first factor is to 

understanding the interfacial interaction between adsorbate molecules and plasmonic 

nanostructures.
72,77,80

 For instance, the energy of the internal molecular electronic 

transition of a molecule, compared to the molecule’s gas phase gap between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO), could be modulated through chemical bonding to the plasmonic nanostructure 

surface, as shown in Figure 1.5.
72

 On the other hand, the adsorption states of molecule 

with varying binding sites and orientations would also play a key role in initiating or 

affecting the plasmonic hot carriers driven photocatalytic process. 

 

Figure 1.5 The impact of chemisorption on the HOMO-LUMO intermolecular excitation band 

gap of the adsorbate molecule. Reprinted with permission from reference 72.
72

 Copyright 2014 

American Chemical Society. 
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    Another key factor that might limit the wide applications of plasmon-driven 

photocatalysis is the lifetime of plasmonic hot carriers.
71,73

 It is very important to 

investigate not only the total number of carriers generated through plasmon decay, but 

also their energy distribution.
73

 As shown in Figure 1.6, Nordlander and co-workers 

carried out an interesting simulation on the energy distribution of the hot carriers 

generated by silver nanoparticles with diameters of 15 nm using four different hot carrier 

lifetimes.
73

 It was demonstrated that the energy distribution of the hot carriers change 

strikingly as the lifetime of hot carriers is varied within that time range, that is, long 

lifetimes give rise to the generation of carriers with large energies. The hot carriers with 

large energies show promising applications for one to harness them to drive or enhance 

interesting and unexpected catalytic reactions that are extremely difficult to achieve 

through traditional thermal-induced catalytic reactions or semiconductor-based 

photocatalytic reactions. While the detailed mechanisms might be much more 

complicated, the lifetime-dependent hot carriers energy distribution provides significant 

insights on the basic principle toward rational design of high performance plasmonic 

photocatalysts. Moreover, the lifetime of plasmonic hot carriers is also one of the most 

important reasons why we chose to work on nanomaterials instead of bulk materials 

because the plasmonic nanoparticles show much longer plasmon lifetime than their 

corresponding bulk materials, which would significantly facilitate the development of 

plasmon-driven photocatalysis toward renewable solar energy conversion. 
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Figure 1.6 Hot carrier distribution from simulation. The number of hot electrons (red lines) and 

hot holes (blue lines) generated per unit of time and volume as a function of their energy. Four 

different hot carrier lifetimes were simulated on Ag nanoparticle with the diameter of 15 nm. The 

frequency of the external illumination is fixed to 3.65 eV, which corresponds to the plasmon 

frequency. Zero energy refers to the Fermi level. Reprinted with permission from reference 73.
73

 

Copyright 2014 American Chemical Society. 

 

 

1.5 Goal and Outline of the Dissertation 

The goal of this dissertation is to gain new insights on interfacial molecular 

transformation kinetics and underlying mechanism of heterogeneous catalysis and 

plasmon-driven photocatalysis using in situ plasmon-enhanced spectroscopic tool for 

guiding rational design of high performance metallic nanocatalysts and photocatalysts 

toward environmental and energy application. 

    Metal nanoparticles have been of tremendous interest because of their intriguing size- 

and shape-dependent plasmonic and catalytic properties. The combination of tunable 
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plasmon resonances with superior catalytic activities on the same nanoparticle, however, 

has long been challenging because plasmonics and catalysis require nanoparticles in two 

drastically different size regimes. Tunable plasmon resonances is a unique feature of sub-

wavelength metallic nanoparticles, whereas heterogeneous catalysis requires the use of 

sub-5 nm nanoparticles as the catalysts. I found a unique way to bridge this size gap 

between nanoplasmonics and nanocatalysis by demonstrating that the desired plasmonic 

and catalytic properties can be integrated on the same particle by controllably creating 

high-index facets on individual sub-wavelength metallic nanoparticles. The capabilities to 

both nanoengineer high-index facets and fine-tune the plasmon resonances through 

deliberate particle geometry control allow us to use these nanoparticles for a dual 

purpose: as substrates for plasmon-enhanced spectroscopies and efficient surface 

catalysts. Such dual functionality enables us to gain quantitative insights into the facet-

dependent molecular transformations on metallic nanocatalysts using surface-enhanced 

Raman spectroscopy (SERS) as an ultrasensitive spectroscopic tool with unique time-

resolving and molecular finger-printing capabilities. 

    In Chapter 2, I demonstrated the effects of the nanoscale porosity on the far- and near-

field optical properties of the nanoparticles have been investigated both experimentally 

by optical extinction and single-nanoparticle Raman spectroscopic measurements and 

theoretically through finite-difference time-domain (FDTD) calculations. Furthermore, I 

showed that subwavelength Au nanoparticles with nanoscale surface porosity represent a 

unique bifunctional nanostructure that serves as both high-performance SERS substrates 

and efficient surface catalysts, allowing one to unravel the kinetics and pathways of 
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surface-catalyzed reactions with unprecedented sensitivity and detail through time-

resolved plasmon-enhanced spectroscopic measurements (Chapter 3). 

    In Chapter 4, I further demonstrated that Au nanoparticles with tipped surface 

structures, such as concave nanocubes, nanotrisoctahedra, and nanostars, possess size-

dependent tunable plasmon resonances and intense near-field enhancements exploitable 

for single-particle SERS under near-infrared excitation. In Chapter 5,  I studied the 

intrinsic facet-dependent catalytic activities of colloidal subwavelength Au nanoparticles 

enclosed by various types of well-defined high-index facets using the catalytic 

hydrogenation of 4-nitrothiophenol as a model reaction. Our results provide compelling 

experimental evidence on the crucial roles of undercoordinated surface atoms in Au-

based heterogeneous catalysis and shed light on the underlying relationship between the 

atomic-level surface structures and the intrinsic catalytic activities of Au nanocatalysts. 

    In Chapter 6 and 7, I focused on the facet control of Au nanorods, which are optically 

tunable anisotropic nanoparticles with built-in catalytic activities. I demonstrated that 

cylindrical Au nanorods undergo controlled facet evolution during their overgrowth in 

the presence of cuprous ions and cationic surfactants, resulting in the formation of 

anisotropic nanostructures enclosed by specific types of well-defined high-index and low-

index facets. Taking full advantage of the combined structural and plasmonic tunability, I 

have further studied the facet-dependent heterogeneous catalysis on well-faceted Au 

nanorods using SERS. In Chapter 8, I investigated the foreign ion- and surfactant-

coguided overgrowth of single-crystalline Au nanorods as a model system to elucidate 

the intertwining roles of silver foreign ions, surface-capping surfactants, and reducing 

agents that underpin the intriguing structural evolution of Au nanocrystals. I 
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demonstrated that the geometry-controlled nanorod overgrowth involves two distinct 

underlying pathways, Ag underpotential deposition and Au-Ag electroless codeposition, 

which are interswitchable upon maneuvering the interplay of the silver ions, surfactants, 

and reducing agents. 

    More recently, I further expanded my research interest into plasmonic hot electron-

driven photocatalytic reactions (Chapter 9 and 10). It has been recently observed that the 

localized surface plasmon resonance supported by metallic nanostructures plays a crucial 

role in either driving or enhancing a series of interesting chemical or photochemical 

reactions. However, key scientific questions concerning about the detailed mechanisms of 

plasmon-driven photocatalytic reactions are still poorly understood. Therefore, I focused 

on the quantitative understanding of the kinetics and underlying pathways of plasmon-

driven photocatalysis. I used SERS to precisely monitor, in real time, the plasmon-driven 

photoreaction kinetics at the molecule-nanoparticle interfaces. The reductive dimerization 

of 4-nitrothiophenol and oxidative coupling of thiophenol-derivates were chosen as 

model reactions to explore the effects of plasmon excitations, molecular adsorption 

states, local field enhancements, and photothermal processes, on the plasmon-driven 

photocatalytic reactions. In addition, I further discovered the unique capability of 

plasmon excitation toward decarboxylation of mercaptobenzoic acid, and also acting as 

plasmonic scissor for aromatic side-chain cleavage. 

1.6 References 

(1) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem Rev 2005, 105, 1025-

1102. 



www.manaraa.com

 

19 

(2) Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem Rev 2011, 111, 

3913-3961. 

(3) El-Sayed, M. A. Accounts Chem Res 2001, 34, 257-264. 

(4) Mie, G. Ann Phys-Berlin 1908, 25, 377-445. 

(5) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; 

Hunyadi, S. E.; Li, T. J Phys Chem B 2005, 109, 13857-13870. 

(6) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, 

D.; Xia, Y. N. Chem Rev 2011, 111, 3669-3712. 

(7) Willets, K. A.; Van Duyne, R. P. Annu Rev Phys Chem 2007, 58, 267-297. 

(8) Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Accounts Chem Res 

2008, 41, 1578-1586. 

(9) Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Science 2011, 332, 702-

704. 

(10) Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Acc Chem Res 2008, 

41, 1653-1661. 

(11) Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, 

J.; Li, X. D.; Xia, Y. N. Adv Mater 2005, 17, 2255-2261. 

(12) Lal, S.; Clare, S. E.; Halas, N. J. Accounts Chem Res 2008, 41, 1842-1851. 

(13) Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; 

Mirkin, C. A. Angew Chem Int Ed Engl 2010, 49, 3280-3294. 

(14) Nikoobakht, B.; El-Sayed, M. A. Chem Mater 2003, 15, 1957-1962. 

(15) Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. 

Science 2001, 294, 1901-1903. 



www.manaraa.com

 

20 

(16) Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Chem Phys Lett 

1998, 288, 243-247. 

(17) Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176-2179. 

(18) Raman, C. V.; Krishnan, K. S. Nature 1928, 122, 169-169. 

(19) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem Rev 1999, 99, 

2957-+. 

(20) Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Chem Phys Lett 1974, 26, 163-

166. 

(21) Albrecht, M. G.; Creighton, J. A. J Am Chem Soc 1977, 99, 5215-5217. 

(22) Jeanmaire, D. L.; Vanduyne, R. P. J Electroanal Chem 1977, 84, 1-20. 

(23) Moskovits, M. Rev. Mod. Phys. 1985, 57, 783-826. 

(24) Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241-250. 

(25) Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Accounts Chem. Res. 

2008, 41, 1653-1661. 

(26) Craig, A. P.; Franca, A. S.; Irudayaraj, J. Annual Review of Food Science and 

Technology, Vol 4 2013, 4, 369-380. 

(27) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; 

Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 

392-395. 

(28) Halvorson, R. A.; Vikesland, P. J. Environ. Sci. Technol. 2010, 44, 7749-7755. 

(29) Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. J. Am. 

Chem. Soc. 2003, 125, 588-593. 

(30) Barhoumi, A.; Halas, N. J. J. Am. Chem. Soc. 2010, 132, 12792-12793. 



www.manaraa.com

 

21 

(31) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. 

Nat. Mater. 2008, 7, 442-453. 

(32) Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Small 2010, 6, 604-610. 

(33) Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; 

Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. Nat. Biotechnol. 2008, 26, 83-90. 

(34) Kim, J. H.; Kim, J. S.; Choi, H.; Lee, S. M.; Jun, B. H.; Yu, K. N.; Kuk, E.; Kim, 

Y. K.; Jeong, D. H.; Cho, M. H.; Lee, Y. S. Anal. Chem. 2006, 78, 6967-6973. 

(35) Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G. Adv. Mater. 2007, 19, 

3100-3108. 

(36) Zavaleta, C. L.; Smith, B. R.; Walton, I.; Doering, W.; Davis, G.; Shojaei, B.; 

Natan, M. J.; Gambhir, S. S. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 13511-13516. 

(37) Maiti, K. K.; Dinish, U. S.; Samanta, A.; Vendrell, M.; Soh, K. S.; Park, S. J.; 

Olivo, M.; Chang, Y. T. Nano Today 2012, 7, 85-93. 

(38) Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 

111, 3913-3961. 

(39) Wang, H.; Levin, C. S.; Halas, N. J. J. Am. Chem. Soc. 2005, 127, 14992-14993. 

(40) Lee, S. J.; Morrill, A. R.; Moskovits, M. J. Am. Chem. Soc. 2006, 128, 2200-

2201. 

(41) Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. 

F.; Wang, J. K.; Wang, Y. L. Adv. Mater. 2006, 18, 491-495. 

(42) Osberg, K. D.; Rycenga, M.; Harris, N.; Schmucker, A. L.; Langille, M. R.; 

Schatz, G. C.; Mirkin, C. A. Nano Lett. 2012, 12, 3828-3832. 



www.manaraa.com

 

22 

(43) Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Chem. 

Soc. Rev. 2008, 37, 898-911. 

(44) Xia, Y. N.; Halas, N. J. MRS Bull. 2005, 30, 338-344. 

(45) Wang, H.; Halas, N. J. Adv. Mater. 2008, 20, 820-825. 

(46) Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. 

Nano Lett. 2010, 10, 5006-5013. 

(47) Liu, Z.; Zhang, F. L.; Yang, Z. B.; You, H. J.; Tian, C. F.; Li, Z. Y.; Fang, J. X. J. 

Mater. Chem. C 2013, 1, 5567-5576. 

(48) Lin, H. X.; Li, J. M.; Liu, B. J.; Liu, D. Y.; Liu, J. X.; Terfort, A.; Xie, Z. X.; 

Tian, Z. Q.; Ren, B. Phys. Chem. Chem. Phys. 2013, 15, 4130-4135. 

(49) Li, S. W.; Xu, P.; Ren, Z. Q.; Zhang, B.; Du, Y. C.; Han, X. J.; Mack, N. H.; 

Wang, H. L. ACS Appl. Mater. Interfaces 2013, 5, 49-54. 

(50) Liang, H. Y.; Li, Z. P.; Wang, W. Z.; Wu, Y. S.; Xu, H. X. Adv. Mater. 2009, 21, 

4614-4618. 

(51) Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. J. Am. Chem. Soc. 2010, 

132, 268-274. 

(52) Barbosa, S.; Agrawal, A.; Rodriguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-

Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzan, L. M. Langmuir 2010, 26, 14943-

14950. 

(53) Rodriguez-Lorenzo, L.; Alvarez-Puebla, R. A.; de Abajo, F. J. G.; Liz-Marzan, L. 

M. J. Phys. Chem. C 2010, 114, 7336-7340. 

(54) Khoury, C. G.; Vo-Dinh, T. J. Phys. Chem. C 2008, 112, 18849-18859. 



www.manaraa.com

 

23 

(55) Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jackel, F.; Feldmann, J. Appl. Phys. Lett. 

2009, 94, 3. 

(56) Sanchez-Gaytan, B. L.; Swanglap, P.; Lamkin, T. J.; Hickey, R. J.; Fakhraai, Z.; 

Link, S.; Park, S. J. J. Phys. Chem. C 2012, 116, 10318-10324. 

(57) Wang, H.; Goodrich, G. P.; Tam, F.; Oubre, C.; Nordlander, P.; Halas, N. J. J. 

Phys. Chem. B 2005, 109, 11083-11087. 

(58) Huang, Y. F.; Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.; Ren, B.; Tian, Z. Q. 

Phys Chem Chem Phys 2012, 14, 8485-8497. 

(59) Chen, T.; Wang, H.; Chen, G.; Wang, Y.; Feng, Y. H.; Teo, W. S.; Wu, T.; Chen, 

H. Y. Acs Nano 2010, 4, 3087-3094. 

(60) Michota, A.; Kudelski, A.; Bukowska, J. J Raman Spectrosc 2001, 32, 345-350. 

(61) Heck, K. N.; Janesko, B. G.; Scuseria, G. E.; Halas, N. J.; Wong, M. S. J. Am. 

Chem. Soc. 2008, 130, 16592-16600. 

(62) Joseph, V.; Engelbrekt, C.; Zhang, J. D.; Gernert, U.; Ulstrup, J.; Kneipp, J. 

Angew. Chem.-Int. Edit. 2012, 51, 7592-7596. 

(63) Xie, W.; Herrmann, C.; Kompe, K.; Haase, M.; Schlucker, S. J Am Chem Soc 

2011, 133, 19302-19305. 

(64) Xie, W.; Walkenfort, B.; Schlucker, S. J. Am. Chem. Soc. 2013, 135, 1657-1660. 

(65) Jing, H.; Zhang, Q. F.; Large, N.; Yu, C. M.; Blom, D. A.; Nordlander, P.; Wang, 

H. Nano Lett. 2014, 14, 3674−3682. 

(66) Liu, R.; Liu, J. F.; Zhang, Z. M.; Zhang, L. Q.; Sun, J. F.; Sun, M. T.; Jiang, G. B. 

J. Phys. Chem. Lett. 2014, 5, 969-975. 



www.manaraa.com

 

24 

(67) Huang, J. F.; Zhu, Y. H.; Lin, M.; Wang, Q. X.; Zhao, L.; Yang, Y.; Yao, K. X.; 

Han, Y. J. Am. Chem. Soc. 2013, 135, 8552-8561. 

(68) Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241-250. 

(69) Willets, K. A.; Van Duyne, R. P. In Annual Review of Physical Chemistry; 

Annual Reviews: Palo Alto, 2007; Vol. 58, p 267-297. 

(70) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 

99, 2957–2976. 

(71) Brongersma, M. L.; Halas, N. J.; Nordlander, P. Nat Nanotechnol 2015, 10, 25-

34. 

(72) Kale, M. J.; Avanesian, T.; Christopher, P. Acs Catalysis 2014, 4, 116-128. 

(73) Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Acs Nano 2014, 8, 7630-

7638. 

(74) Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Science 2015, 349, 632-635. 

(75) Christopher, P.; Xin, H. L.; Linic, S. Nature Chemistry 2011, 3, 467-472. 

(76) Linic, S.; Christopher, P.; Xin, H. L.; Marimuthu, A. Accounts Chem Res 2013, 

46, 1890-1899. 

(77) Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; 

Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Nano Lett 2013, 13, 240-247. 

(78) Ueno, K.; Misawa, H. Journal of Photochemistry and Photobiology C-

Photochemistry Reviews 2013, 15, 31-52. 

(79) Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, 

J. C.; Yan, C. H. J Am Chem Soc 2013, 135, 5588-5601. 



www.manaraa.com

 

25 

(80) Govorov, A. O.; Zhang, H.; Demir, H. V.; Gun'ko, Y. K. Nano Today 2014, 9, 85-

101. 

(81) Tsuboi, Y.; Shimizu, R.; Shoji, T.; Kitamura, N. J Am Chem Soc 2009, 131, 

12623-12627. 

(82) Deeb, C.; Ecoffet, C.; Bachelot, R.; Plain, J.; Bouhelier, A.; Soppera, O. J Am 

Chem Soc 2011, 133, 10535-10542. 

(83) Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Langmuir 2011, 27, 

10677-10682. 

(84) van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, 

V.; Weckhuysen, B. M. Nat Nanotechnol 2012, 7, 583-586. 

(85) Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J Am Chem 

Soc 2010, 132, 9244-9246. 

(86) Sun, M. T.; Huang, Y. Z.; Xia, L. X.; Chen, X. W.; Xu, H. X. J Phys Chem C 

2011, 115, 9629-9636. 

(87) Linic, S.; Christopher, P.; Ingram, D. B. Nature Materials 2011, 10, 911-921. 

(88) Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Nature Materials 2012, 11, 

1044-1050. 

(89) Huang, H.; Zhang, L.; Lv, Z.; Long, R.; Zhang, C.; Lin, Y.; Wei, K.; Wang, C.; 

Chen, L.; Li, Z. Y.; Zhang, Q.; Luo, Y.; Xiong, Y. J Am Chem Soc 2016, 138, 6822-

6828. 

(90) Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G. D.; Moskovits, M. Nat 

Nanotechnol 2013, 8, 247-251. 



www.manaraa.com

 

26 

CHAPTER 2 

Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense 

Field Enhancements for Single-Particle SERS  
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 ui Wang, “Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense 

Field Enhancements for Single-Particle SERS”, J. Phys. Chem. Lett., 2014, 5, 370-374. 
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2.1 Introduction 

Noble metal nanoparticles exhibit intriguing plasmon-dominated optical properties.
1-3 

By 

judiciously tailoring the geometries of the metal nanoparticles, one can fine-tune the 

optical resonance frequencies and optimize the electric near field enhancements 

associated with the plasmonic excitations.
2-6

 Expanding the plasmonic tunability of 

nanoparticles over a broad spectral range is of paramount importance because it opens up 

a whole set of new opportunities for photonic,
7,8

 optoelectronic,
9,10

 spectroscopic,
11,12

 and 

biomedical applications.
13,14

 This has, in turn, stimulated rapidly growing interests in a 

variety of metallic nanostructures with geometrically tunable optical properties, such as 

nanorods,
2,15

 nanoprisms,
16,17

 nanoshells,
18

 and nanocages.
19

 In this chapter, we report a 

new class of metallic nanostructures, porous Au nanoparticles, which combine highly 

tunable plasmon resonances and intense local electric field enhancements exploitable for 

single-particle surface-enhanced Raman spectroscopy (SERS). 

    Two-dimensional mesoporous or nanoporous Au Two-dimensional mesoporous or 

nanoporous Au thin films
20

 have been of tremendous interest due to their interesting 

porosity-dependent optical properties
21-23 

and superior catalytic activities.
24-26

 While a 

planar Au thin film only supports propagating surface plasmon waves, it has been 

demonstrated that the excitation of both propagating and localized plasmon resonances 

can be achieved in nanoporous Au membranes.
23

 In this context, the large local field 

enhancements associated with the localized plasmon modes sustained by the nanoporous 

films can be harnessed for SERS-based molecular characterization and sensing 

applications.
27,28

 For finite Au nanoparticles whose plasmons are already localized, how 

the nanoscale porosity influences the optical properties of the particles still remains 
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unknown. Although smooth spherical nanoparticles (SSNPs) of Au or Ag possess well-

defined localized plasmon resonances in the visible region, their plasmonic tuning range 

is rather limited. In this work, we show that Au porous nanoparticles (PNPs) exhibit 

greatly enhanced plasmonic tunability over a much broader spectral range with 

significantly intensified near-field enhancements in comparison to the SSNPs of the same 

sizes. We demonstrate, both experimentally and theoretically, that introducing nanoscale 

porosity to a Au nanoparticle has profound influence on both the far- and near-field 

optical properties of the particle. 

2.2 Experimental Section 

Chemicals and Materials. Gold(III) chloride trihydrate (HAuCl4·3H2O, ACS grade) was 

obtained from J.T. Baker. Sodium borohydride (NaBH4, 99%), L-ascorbic acid (AA, 

99.5+%), hydrochloric acid (HCl, 37%), and poly(4-vinylpyridine) (PVP, Mw~60,000) 

were obtained from Sigma-Aldrich. (1-Hexadecyl)trimethylammonium chloride (CTAC, 

96%) and 4-aminothiophenol (C6H7NS, 4-ATP, 97%) were obtained from Alfa Aesar. 

Hydrogen peroxide (H2O2, 30%), sulfuric acid (H2SO4, 96.10%), and ethanol (200 proof) 

were purchased from Fisher Scientific. All reagents were used as received without further 

purification. Ultrapure water (18.2 MΩ resistivity, Barnstead  asyPure II 7138) was used 

for all experiments. Silicon wafers were obtained from University Wafers. 

    Synthesis of Au Seeds. Colloidal Au seeds were prepared by the reducing HAuCl4 

with NaBH4 in the presence of CTAC. In a typical procedure, 0.30 mL of ice-cold, freshly 

prepared NaBH4 (10 mM) were quickly injected into a solution composed of CTAC 

(10.00 mL, 0.10 M) and HAuCl4 (0.25 mL, 10 mM) under magnetic stir. The seed 

solution was stirred for 1 min and then left undisturbed for 2 h. The seed solution was 
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diluted 1000-fold with CTAC (0.10 M) and the diluted seed solution was used for the 

subsequent seed-mediated growth. 

    Synthesis of Au Porous Nanoparticles (PNPs). The Au PNPs were prepared through 

a seed-mediated growth process. The growth solution was prepared by sequentially 

adding HAuCl4 (0.50 mL, 10 mM) and AA (0.10 mL, 0.10 M) into a CTAC (10.00 mL, 

0.10 M) solution. After gently mixing the growth solution for 30 s, the growth of Au 

PNPs was initiated by adding certain volumes of the diluted Au seed solution. The 

reaction solution was gently mixed for 30 s immediately after the addition of Au seeds 

and then left undisturbed at room temperature for 4 h. The as-obtained Au PNPs were 

washed with water three times through centrifugation/redispersion cycles, and finally 

redispersed in 5.0 mL of water. The overall sizes of the resulting Au PNPs were 

controlled by adjusting the amount of Au seeds added. 

    Synthesis of Au Quasi-Spherical (QS) Nanoparticles. The Au QS nanoparticles 

were fabricated following a similar protocol for the Au PNPs except for the addition of 

HCl. The growth solution was prepared by sequentially adding HAuCl4 (0.50 mL, 10 

mM), HCl (0.20 mL, 1.0 M) and AA (0.10 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 

M) solution. After gently mixing the reactants for 30 s, the growth of Au QS 

nanoparticles was initiated by adding certain volumes of the diluted Au seed solution. 

The reaction solution was gently mixed for 30 s immediately after the addition of Au 

seeds and then left undisturbed at room temperature for 4 h. The obtained Au QS 

nanoparticles were washed with water three times through centrifugation/redispersion 

cycles, and finally redispersed in 5.0 mL of water. The sizes of the Au QS nanoparticles 

could be controlled by adjusting the amount of Au seeds added. 
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    Synthesis of Au Trisoctahedral (TOH) Nanoparticles. The Au TOH nanoparticles 

were fabricated following a similar protocol for the Au PNPs except for the increased 

amount of AA. The growth solution was prepared by sequentially adding HAuCl4 (0.50 

mL, 10 mM) and AA (1.0 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) solution. After 

gently mixing the growth solution for 30 s, the growth of Au TOH nanoparticles was 

initiated by adding 0.01 mL of the diluted Au seed solution. The reaction solution was 

gently mixed for 30 s immediately after the addition of Au seeds and then left 

undisturbed at room temperature for 4 h. The obtained Au TOH nanoparticles were 

washed with water three times through centrifugation/redispersion cycles, and finally 

redispersed in 5.0 mL of water. 

    Characterizations. The morphologies and structures of the nanoparticles were 

characterized by transmission electron microscopy (TEM) and selected area electron 

diffraction (SAED) using a Hitachi H-8000 transmission electron microscope operated at 

an accelerating voltage of 200 kV. All samples for TEM measurements were dispersed in 

water and drop-dried on 200 mesh Formvar/carbon-coated Cu grids. The structures of the 

nanoparticles were also characterized by SEM using a Zeiss Ultraplus thermal field 

emission scanning electron microscope. The samples for SEM measurements were 

dispersed in water and drop-dried on silicon wafers. The optical extinction spectra of the 

nanoparticles were measured on aqueous colloidal suspensions at room temperature, 

using a Beckman Coulter Du 640 spectrophotometer. Raman spectra and dark-field 

optical images were obtained on a Bayspec NomadicTM Raman microscopy built on an 

Olympus BX51 microscope equipped with a 785 nm CW diode laser. 
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    Single-Particle SERS Measurements. Sub-monolayer films of isolated Au particles 

were prepared by immobilizing the particles onto PVP (polyvinylpyridine)-functionalized 

silicon substrates. In a typical procedure, silicon substrates were cleaned in a piranha 

solution (sulfuric acid : hydrogen peroxide, 7:3) for 15 min, and then immersed in a 1% 

wt. of PVP ethanolic solution for 24 h. The silicon substrates were thoroughly rinsed with 

ethanol, dried with N2 gas, and then immersed in an aqueous solution of Au particles for 

1 h. The silicon substrates were thoroughly rinsed with ethanol and dried with N2 gas 

after they were removed from the solution of Au particles. The coverage of Au particles 

on the substrates can be controlled by changing the immersion time. The samples for 

single-particle SERS experiments were prepared by evaporating 20 L of a 1.0 mM 

ethanolic solution of 4-ATP on the surface of the isolated Au particles on PVP-

functionalized silicon substrates. The substrates were then thoroughly rinsed with ethanol 

and dried with N2 gas. A couple of drops of water were dropped onto the substrates to 

ensure that the surrounding medium of the Au particles was water, and then a clean glass 

slide with a 0.17 mm thickness was covered onto the top of the water layer before the 

Raman spectral collection. The distance between silicon substrate and the glass slide is 

about 0.5 mm. Figure S4A shows the scheme of the substrate geometry of the single-

particle SERS measurements. SERS spectra were obtained on a Bayspec NomadicTM 

Raman microscopy built on an Olympus BX51 reflected optical system under 785 nm 

laser excitation in the confocal mode (focal area of 2 m diameter). A 50× dark field 

objective (NA=0.5, WD=10.6 mm, Olympus LMPLFLN-BD) was used for both Raman 

signal collection and dark field scattering imaging. The laser beam was focused on one 

particle each time for Raman spectrum collection. The laser power focused on the 
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samples was measured to be 3.6 mW and the spectrum acquisition time was 20 s. Normal 

Raman spectra of 4-ATP were collected on solid films of neat 4-ATP on the silicon 

wafers under the same conditions. 

    Enhancement Factor (EF) Calculations. We estimated the enhancement factors 

(EFs) of Raman signals using the following equation: EF = (ISERS × Nnormal) / (Inormal × 

NSERS), where ISERS is the intensity of a specific band in the SERS spectra of 4-ATP; Inormal 

is the intensity of the same band in the normal Raman spectra of 4-ATP under the same 

condition; Nnormal is the number of probe molecules in the excitation volume for the 

normal Raman measurements; NSERS is the number of adsorbed molecules on an 

individual particle. Two Raman modes of 4-ATP at 1078 cm
-1

and 1590 cm-1 were chosen 

for the EF calculations. To estimate the Nnormal, we calculated the effective excitation 

volume by using the following equation: V = π×(d/2)
2
 ×H, where d is the diameter of the 

beam size (d = 2 μm) and   is the effective depth of focus ( = 10 μm, which was 

estimated by finely controlling the height of the stage during the Raman measurement of 

silicon wafers). Thus, we estimated an effective excitation volume of 3.14×10
-17

 m
3
 for 

our Raman microscopy with 785 nm excitation using the 50× objective. Then Nnormal was 

calculated by using the following expression: Nnormal = (V×D/M)×NA = 1.80 ×10
11

 

molecules, where D is the density of 4-ATP (1.17 g/mL), M is the molar mass of 4-ATP 

(125 g/mol) and NA is the Avogadro constant (6.02×10
23

 mol
−1

). To determine NSERS, a 

self-assembled monolayer of 4-ATP molecules (molecular footprint size of 0.39 nm
2
) 

was assumed to be closely packed on the surface of each Au particle. The surface area of 

the particle was estimated by assuming that each Au PNP has four times of the surface 

area than a smooth sphere of the same overall size. For instant, a Au PNP with the 
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diameter of 2R=189 nm: S=16×π×R
2
 nm

2
 = 448656 nm

2
, and then NSERS = S/0.39 = 

1.15×10
6

 molecules. In this way we were able to estimate the NSERS values for particles 

with different size and then calculate the EFs. 

    Finite-Difference Time-Domain (FDTD) Calculations. FDTD simulations (FDTD, 

Lumerical Solutions) were performed to calculate the far-field and near-field properties 

of the Au nanoparticles. Dielectric permittivity tabulated by Johnson and Christy was 

used for Au and a refractive index of 1.34 was used for water. The geometric parameters 

used in the simulations for the Au PNPs, smooth spherical, and TOH nanoparticles were 

extracted from the experimental TEM and SEM images. The Au PNPs and the smooth 

spherical particles were 67, 108, 135, 165, 189, and 215 nm in diameter, while the side 

length of the TOH particle was 94 nm. N spherical pores ranging from 10 to 40 nm in 

diameter were generated and distributed randomly at the surface of the spherical 

nanoparticles. The number of pores, N, increased with the nanoparticle size, in agreement 

with experimental observations. The random distribution of the pores allowed the 

formation of larger craters at the nanoparticle surface and craters with random depths, 

thus showing a good morphological agreement with the actual particle geometry. To 

account for the small morphological details and ensure a good numerical convergence, a 

uniform FDTD meshgrid of 2 nm was used. Extinction spectra were calculated by 

averaging three incident polarizations. This allowed us to reproduce the orientation 

averaging, the random pore distribution, and unpolarized-light excitation of the 

experimental configuration. Near-field enhancement distributions (|E/E0|
2
) were 

calculated at 785 nm for a given incident polarization. The near-field (|E/E0|
2

 and |E/E0|
4
) 

were spatially integrated over a spherical volume of radius R+1 nm where R was the 
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radius of the nanoparticle. The mean enhancements, <|E/E0|
2
> and <|E/E0|

4
> with the unit 

of nm
-3

, were calculated by normalizing the integrated <|E/E0|
2
> and <|E/E0|

4
> over the 

integration volumes. 

2.3 Results and Discussion 

The Au PNPs were fabricated through a seed-mediated growth process in aqueous 

solution at room temperature. Briefly, colloidal Au seeds were prepared by reducing 

chloroauric acid (HAuCl4) with sodium borohydride (NaBH4) in the presence of 

cetyltrimethylammonium chloride (CTAC). The growth of the Au PNPs was initiated by 

injecting various volumes of diluted Au seeds into the particle growth solution, which 

contained HAuCl4, L-ascorbic acid (AA), and CTAC. The reaction solution was gently 

mixed immediately after the addition of Au seeds and then left undisturbed at room 

temperature for 4 h. The as-fabricated particles were separated from the reaction mixtures 

through centrifugation and redispersion in water. Figure 2.1A shows a representative 

scanning electron microscopy (SEM) image of the as-fabricated Au PNPs with diameters 

of 189 ± 8 nm. Each individual particle appeared to be highly porous with nanoscale 

pores in the range of 10-40 nm randomly distributed over the particle surfaces. The 

nanoporosity of the particles was more clearly visualized in the high-magnification SEM 

and transmission electron microscopy (TEM) images taken on individual particles, as 

shown in Figure 2.1B and C, respectively. Figure 2.1D shows the corresponding selected 

area electron diffraction (SAED) pattern of the particle shown in Figure 2.1C, which 

indicated that each PNP was polycrystalline in nature and was composed of crystalline 

domains that adopted different orientations. 
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Figure 2.1. (A) SEM image of Au PNPs with an average size of 189 nm. (B) SEM image and (C) 

TEM image of an individual Au PNP. (D) SAED pattern obtained from the particle in panel C. 

(E-J) TEM images of Au PNPs of various average sizes fabricated by adding (E) 0.5, (F) 0.1, (G) 

0.05, (H) 0.025, (I) 0.015, and (J) 0.01 mL of Au seed solution. Panels E-J share the same scale 

bar in panel E. (K) Histograms showing the size distribution of the Au PNPs shown in panels E-J. 
 

   The average size of the particles can be fine-controlled in the range from ∼50 nm to 

sub-m by simply adjusting the amount of Au seeds added into the growth solution. As 

shown in Figure 2.1E-J, the average sizes of the PNPs increased as the volume of the Au 

seeds decreased. The particles were highly monodisperse with narrow size distribution, as 
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shown in Figure 2.1K. Unlike some other seed-mediated growth methods through which 

the nanoparticles evolve into different morphologies as the overall particle size varies,
29,30

 

the nanoscale porous morphology of the particles fabricated using this protocol was well-

preserved throughout the whole particle size tuning range. Although the average size of 

the pores appeared to be independent on the overall particle size, the average numbers of 

pores on individual Au PNPs were observed to increase with the overall particle sizes. 

    The kinetics of the seed-mediated particle growth was found to be a key factor in 

determining the morphology of the resulting nanoparticles. Figure 2.2A schematically 

illustrates the correlation between particle morphologies and the reaction kinetics. By 

adding HCl into the particle growth solution, the growth of nanoparticles could be 

significantly slowed down due to the decreased reducibility of AA in acidic 

environment,
31

 leading to the formation of Au quasi-spherical (QS) nanoparticles (Figure 

2.2B), which are thermodynamically more stable than the PNPs. The TEM image (Figure 

2.2C) and SAED pattern (Figure 2.2D) of an individual particle clearly show that each 

Au QS particle was polycrystalline with several crystalline domains packed together into 

a multi-twined structure. The nanoparticle growth process could be significantly 

accelerated by increasing the amount of AA added to the particle growth solution. The 

faster particle growth facilitated the formation of the kinetically favored, single-

crystalline Au trisoctahedral (TOH) nanoparticles enclosed by 24 high-index {221} 

facets
32

 (see Figure 2.2E and 2.F). The SAED pattern of an individual TOH particle 

(Figure 2.2G) confirmed the single-crystalline nature of the particle. In this context, the 

Au PNPs can be considered as a unique “metastable” product resulting from the 
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intermediate particle growth kinetics that fall between the thermodynamically controlled 

regime and kinetically favored regime. 

 

Figure 2.2. (A) Schematics illustrating the morphology control of Au nanocrystals through 

controlling the particle growth kinetics. (B) SEM image of Au QS nanoparticles. The inset 

highlights one individual particle. (C) TEM image of one Au QS nanoparticle. (D) SAED pattern 

obtained from the particle in panel C. (E) SEM image of Au TOH nanoparticles. The inset 

highlights one individual nanoparticle. (F) TEM image of one Au TOH nanoparticle. (G) SAED 

pattern obtained from the particle in panel F. 

 

    The Au PNPs exhibit size-dependent localized plasmon resonances whose frequencies 

are highly tunable across the visible and near-IR spectral regions. As shown in Figure 

2.3A, the plasmon resonance progressively red-shifted and became increasingly 

broadened as the overall particle size increased. In comparison to the Au QS particles 
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with similar sizes, the PNPs exhibited significantly enhanced plasmonic tunability over a 

much broader spectral range. For SSNPs within the quasi-static limit (diameters smaller 

than ∼60 nm), the plasmon resonance wavelengths lie around 520 nm and are essentially 

independent of particle size. As the size of a SSNP increases to the size regime beyond 

the quasi-static limit, the dipole plasmon mode starts to red shift and becomes  

significantly broadened. In addition, the multipolar plasmon modes, such as quadrupole, 

octupole, and even higher order multipole modes, become increasingly pronounced and 

begin to dominate the overall extinction spectral line shapes as a consequence of the 

phase-retardation effects.
33,34

 We have experimentally demonstrated such size 

dependence of the plasmonic features by measuring the extinction spectra of Au QS 

particles with various sizes. For the Au TOH particles with a side length of 94 ± 4 nm, a 

strong quadrupole mode together with a broad, weaker dipole plasmon band was also 

observed in the extinction spectrum. Remarkably, when nanoscale porosity was 

introduced into the Au nanoparticles, the higher-order mode (quadrupole) was 

significantly dampened, whereas the dipole plasmon mode remained robust and shifted to 

longer wavelengths.  

    In addition to the greatly enhanced tunability of the far-field optical responses, the 

nanoscale porosity also creates sharp, nanoscale surface features, giving rise to intense 

near-field “hot spots” upon plasmonic e citation. The Au PNPs thus combine highly 

tunable plasmon resonances with intense local field enhancements, allowing for single-

particle SERS under near-IR excitation (785 nm). 4-Aminothiophenol (4-ATP) was used 

as a nonresonant probe molecule to evaluate the overall Raman enhancements on 

individual Au PNPs. A submonolayer of isolated particles was immobilized on a 



www.manaraa.com

 

39 

polyvinylpyridine-functionalized silicon substrate and was used as the SERS substrates. 

We used a confocal Raman microscope to collect the SERS spectra one particle at a time. 

SERS spectra were collected from more than 100 individual particles for each sample. 

Figure 2.3B shows the representative normal Raman spectrum of 4-ATP and SERS 

spectra of 4-ATP adsorbed on individual PNPs. The SERS signal was the largest when 

the plasmon was resonant with the laser and gradually decreased as the plasmon 

resonances were detuned from the laser. The plasmon-dependent SERS activity was 

further confirmed by the histograms of the Raman intensities of the 1078 and 1590 cm
-1

 

modes obtained from 100 individual particles (Figure 2.3C and D) for each sample. The 

Raman enhancement factors (EFs) were estimated to be on the order of 10
5
, approaching 

10
6
 when the plasmon resonance was resonant with the excitation laser. These estimated 

EFs were averaged over the entire particle surfaces. The local enhancements in the near-

field hot spots, however, are anticipated to be at least 1 order of magnitude higher. In 

contrast, the Au QS and TOH particles exhibited much weaker Raman enhancements 

than the PNPs. 

    To gain more quantitative insights into the structure-property relationship of the 

nanoporous particles, finite-difference time-domain (FDTD) simulations were performed 

to calculate their extinction spectra and near-field enhancements. Figure 2.4A shows the 

calculated extinction spectra of a Au sphere (189 nm in diameter) with a varying number 

of pores randomly generated at the particle surface. Both the dipole and quadrupole 

plasmon bands progressively red-shifted upon an increase of the porosity. As the number 

of nanoscale pores increased, the intensity of the quadrupole mode gradually decreased 

while the dipole plasmon mode remained robust (Figure 2.4B). The effects of 
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nanoporosity on the far-field optical extinction of the particles were also found to be size-

dependent. For relatively small Au particles within the quasi-static limit, the nanoscale 

porosity caused a decrease of the dipolar extinction peak and a broadening and red shift 

with increasing number of pores. Larger particles exhibit greatly enhanced tunability of 

the dipole resonance, with higher-order multipolar resonances significantly dampened. In 

Figure 2.4C and D, we compare the calculated extinction spectra of Au PNPs and SSNPs 

with various overall sizes. It is apparent that the plasmon resonance frequencies became 

much more sensitively dependent on the overall size of the PNPs than those of the 

SSNPs. The FDTD results showed excellent agreement with our experimental 

observations. 

    We have further used FDTD to calculate the near-field enhancements of the particles. 

Figure 2.4E shows the cross-sectional views of the calculated near-field distributions (|E/ 

E0|
2
) of PNP and SSNP with various sizes at 785 nm excitation. Each PNP possesses 

large numbers of hot spots with local field enhancements significantly more intense than 

those achievable on the SSNP of the same overall size. As shown in Figure 2.4F and G, 

the average near-field intensity (|E/E0|
2
) enhancements of Au PNP were about 10 times 

higher than those on the SSNP. The Au TOH particle with a side length of 94 nm showed 

larger near-field enhancements than the SSNPs largely due to the presence of sharp tips at 

the particle surfaces. This is in agreement with the experimental observations that the 

Raman enhancements on individual TOH particles were higher than those on the Au QS 

nanoparticles, though they were not as high as those achieved on individual Au PNPs. 
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Figure 2.3. (A) Extinction spectra of colloidal Au PNPs of various sizes. The vertical dashed line 

shows the excitation laser wavelength (785 nm) for Raman measurements. (B) Representative 

SERS spectra of 4-ATP adsorbed on individual Au PNPs of various sizes. The bottom spectrum 

is the normal Raman spectrum of the neat 4-ATP film. Histograms of the Raman intensity of the 

(C) 1078 and (D) 1590 cm
-1

 modes obtained from individual Au PNPs. (E) Average SERS EFs 

on individual Au PNPs of various sizes. The labels of i, ii, iii, iv, v, and vi in all of the panels 

correspond to the Au PNP samples shown in Figure 1E−J, respectively. 
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Figure 2.4. (A) Calculated extinction spectra of spherical Au particles (189 nm in diameter) with 

0, 25, 100, 200, 300, and 400 pores. (B) Calculated extinction cross sections at the dipole and 

quadrupole resonance wavelengths (upper panel) and the plasmon resonance wavelengths (lower 

panel) of the Au particles (189 nm) with a varying number of pores. Calculated extinction spectra 

of (C) Au PNPs and (D) Au SSNPs of different particle sizes. The particle sizes and the numbers 

of pores in each particle are labeled in panel C. (E) The cross-sectional views of the calculated 

near-field enhancements |E/E0|
2
 of SSNPs (upper row) and PNPs (lower row) with various sizes at 

785 nm excitation. Mean-field enhancements averaged over volume: (F) ⟨|E/E0|
2⟩ and (G) 

⟨|E/E0|
4⟩ of PNPs and SSNPs of overall particle sizes of 67, 108, 135, 165, 189, and 215 nm. 
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2.4 Conclusions 

In summary, kinetically controlled seed-mediated growth allows for the fabrication of 

nanoscale porous Au particles with fine-controlled overall particle sizes. The nanoporous 

Au particles represent a new class of subwavelength photonic materials that combine 

tunable localized plasmon resonances with intense near-field enhancements exploitable 

for single particle SERS. In addition to their attractive optical properties, nanoporous Au 

may also exhibit superior catalytic activities toward a variety of chemical reactions, as 

previously demonstrated on nanoporous Au films.
24-26

 Therefore, these optically tunable 

porous nanoparticles may serve a dual purpose, as substrates for plasmon-enhanced 

spectroscopies and efficient surface catalysts. This dual functionality may allow for 

quantitative spectroscopic studies of kinetics and reaction pathways of surface-catalyzed 

reactions with unprecedented sensitivity and detail. 
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CHAPTER 3 

Nanoporosity-Enhanced Catalysis on Subwavelength Au Nanoparticles: a 

Plasmon-Enhanced Spectroscopic Study 
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3.1 Introduction 

Au nanoparticles have attracted immense attention owing to their intriguing size- and 

shape-dependent catalytic and optical properties.
1-4

 Distinct from Au bulk materials that 

are chemically inert, Au nanoparticles with diameters smaller than 5 nm exhibit 

remarkable catalytic activities towards a variety of oxidation and hydrogenation reactions 

even under mild conditions such as ambient temperature and pressure,
5-11

 whereas Au 

particles with characteristic dimensions beyond 5 nm are found to be catalytically 

inactive. When used for heterogeneous catalysis, the catalytically active small Au 

nanoparticles are typically supported on high-surface-area oxide materials.
5, 6, 12-14

 These 

supports can significantly enhance the synergistic catalytic performance of the hybrid 

materials through various mechanisms,
15-18

 making it extremely challenging to delineate 

the role of the supports and the intrinsic catalytic activities of Au. Using free-standing, 

unsupported colloidal Au nanoparticle as catalysts, compelling evidence on the intrinsic, 

size-dependent catalytic activities of Au nanoparticles has been obtained.
19-21

 It has 

become increasingly unanimous that the undercoordinated surface atoms located at the 

particle edges and corners provide a key contribution to the catalytic activities of sub-5 

nm Au nanoparticles.
5, 22-25

 Interestingly, it has been recently shown that dealloyed 

nanoporous Au films without any support exhibit similar catalytic activities as the oxide-

supported sub-5 nm Au nanoparticles toward oxidation reactions even though the feature 

lengths of their nanopores and ligaments are far beyond 5 nm.
25-30

 The origin of such high 

catalytic activity has been interpreted, based on high-resolution electron microscopic 

observations, as a result of the high fraction of undercoordinated surface atoms, 

comparable to that of sub-5 nm nanoparticles, present on the highly curved surfaces of 
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the dealloyed nanoporous Au films,
31

 which serve as the active sites for catalytic 

reactions. 

The development of detailed mechanistic understanding of Au-based heterogeneous 

catalysis requires the capabilities not only to fine-control the dimensions and surface 

structures of Au nanocatalysts but also to precisely monitor, in real time, the reaction 

kinetics and chemical transformations occurring at the reactant-catalyst interfaces. 

Surface-enhanced Raman spectroscopy (SERS) provides a unique approach to the in situ 

monitoring of molecular transformations in heterogeneous catalysis with high detection 

sensitivity, excellent surface selectivity, and rich molecular structural information.
32-38

 By 

measuring the SERS signals from the monolayer molecules pre-adsorbed on the 

nanocatalyst surfaces, unraveling the intrinsic kinetics and mechanisms of surface-

catalyzed reactions becomes possible with minimal complication introduced by the 

surface-capping ligands as well as the diffusion, adsorption, and desorption of reactants 

and products. The unique capability of SERS to resolve detailed molecular structures 

further enables the identification of transient intermediates along the reaction pathways.
35, 

36
 Using SERS to directly monitor catalytic reactions on Au nanocatalysts, however, has 

been challenging because SERS and catalysis require Au nanoparticles in two drastically 

different size regimes. SERS relies on the generation of intense plasmon-field 

enhancements in close proximity to the particle surfaces,
39-41

 which are not achievable on 

the catalytically active sub-5 nm Au nanoparticles. While Au nanoparticles in the 

subwavelength size regime exhibit strong plasmon resonances and intense local fields 

that can be harnessed for SERS, they are no longer catalytically active. It has been 

recently demonstrated that the in situ monitoring of surface-catalyzed reactions by SERS 



www.manaraa.com

 

50 

becomes possible only when catalytically active small nanoparticles of Au, Pt, or Pd and 

plasmonically active large Au nanoparticles are hierarchically assembled into three-

dimensional multilayered complex superstructures.
32-35, 37

 The structural complexity of 

these bifunctional hybrid particles, however, makes it challenging to directly correlate the 

surface structures with the catalytic activities of the nanocatalysts.   

In this chapter, we study the nanoporosity-enhanced catalytic activities of 

subwavelength Au nanoparticles using the hydrogenation of nitrophenol by sodium 

borohydride as a model reaction. The introduction of nanoscale surface porosity to 

subwavelength Au nanoparticles dramatically enhances not only the tunability of 

plasmon resonance frequencies but also the near-field intensities of the particles, making 

the Au porous nanoparticles (PNPs) ideal substrates for single-particle SERS.
42

 In 

addition, Au PNPs possess highly curved surfaces rich of undercoordinated atoms at the 

surface steps and kinks, well-mimicking the surfaces of the sub-5 nm nanoparticles and 

dealloyed nanoporous Au films. Therefore, Au PNPs exhibit drastically enhanced 

catalytic activities than the Au quasi-spherical nanoparticles (QSNPs) of the same sizes. 

Furthermore, the monometallic Au PNPs are compositionally simpler than the dealloyed 

nanoporous Au films containing residual less-noble elements, such as Ag, that cannot be 

completely removed through the dealloying process.
25-31, 43

 The catalytic activity of the 

dealloyed nanoporous Au films has been found to strongly depend on the amount and 

spatial distribution of the residual Ag,
12, 31, 44, 45

 though the exact roles of the residual Ag 

still remain unclear. The compositional simplicity of free-standing Au PNPs allows us to 

build direct correlations between the surface structures and the intrinsic catalytic 

activities without the complication due to the effects of oxide supports and residual less-
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noble elements. As demonstrated in this work, the unique dual functionality of Au PNPs 

as both substrates for plasmon-enhanced spectroscopy and efficient surface catalysts 

enables detailed, quantitative spectroscopic study of the intrinsic kinetics and 

mechanisms of surface reactions on Au nanocatalysts. 

3.2 Experimental Section 

Materials. Gold(III) chloride trihydrate (HAuCl4·3H2O, ACS grade) were obtained from 

J.T. Baker. Sodium borohydride (NaBH4, 99%), hydrochloric acid (HCl, 37%), L-

ascorbic acid (AA, 99.5%), and 4-nitrophenol (C6H5NO2, 4-NP, 99%) were obtained 

from Sigma-Aldrich. Silver nitrate (AgNO3, 99.9995% metals basis), (1-

Hexadecyl)trimethylammonium chloride (CTAC, 96%), 4-aminothiophenol (C6H7NS, 4-

ATP, 97%), and 4-nitrothiophenol (C6H5NO2S, 4-NTP, 80%) were obtained from Alfa 

Aesar. (1-Hexadecyl)trimethylammonium bromide (CTAB, > 98%) and sodium oleate 

(NaOL, >97%) were purchased from TCI America. Ethanol (200 proof) was purchased 

from Fisher Scientific. All reagents were used as received without further purification. 

Ultrapure water (18.2 MΩ resistivity, Barnstead  asyPure II 7138) was used for all 

experiments.  

    Synthesis of Au PNPs and QSNPs. Au PNPs and QSNPs were prepared following a 

recently published protocol based on seed-mediated growth in aqueous solution.
42

 First, 

colloidal Au seeds about 2 nm in diameter were prepared by the reducing HAuCl4 with 

NaBH4 in the presence of CTAC. In a typical procedure, 0.30 mL of ice-cold, freshly 

prepared NaBH4 (10 mM) were quickly injected into a solution containing CTAC (10.00 

mL, 0.10 M) and HAuCl4 (0.25 mL, 10 mM) under magnetic stir (1200 rpm). The seed 

solution was stirred for 1 min, then left undisturbed for 2 h, and finally diluted 1000-fold 
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with CTAC (0.10 M). The particle growth solution was prepared by sequentially adding 

HAuCl4 (0.50 mL, 10 mM) and AA (0.10 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) 

solution. To prepare Au PNPs with average diameter of ~ 125 nm, 50 μL of the diluted 

Au seed solution was added into the growth solution. The reaction solution was gently 

mixed for 30 s and then left undisturbed at room temperature for 4 h. The as-obtained Au 

PNPs were washed with water three times through centrifugation/redispersion cycles, and 

finally redispersed in 4.0 mL of water. The Au QSNPs were fabricated following a 

similar protocol for the Au PNPs except for the addition of HCl. The growth solution was 

prepared by sequentially adding HAuCl4 (0.50 mL, 10 mM), HCl (0.20 mL, 1.0 M) and 

AA (0.10 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) solution. After gently mixing 

the reactants for 30 s, the growth of Au QSNPs was initiated by adding 40 μL of the 

diluted Au seed solution, and then left undisturbed at room temperature for 4 h. The 

obtained Au QSNPs were washed with water three times, and finally redispersed in 4.0 

mL of water. 

    Synthesis of Au TOH and ETHH Nanoparticles. Au TOH nanoparticles were 

fabricated following a similar protocol for the Au PNPs except for the increased amount 

of AA.
42

 The growth solution was prepared by sequentially adding HAuCl4 (0.50 mL, 10 

mM) and AA (1.0 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) solution. After gently 

mixing the growth solution for 30 s, the growth of Au TOH nanoparticles was initiated by 

adding 15 μL of the diluted Au seed solution, and then left undisturbed at room 

temperature for 4 h. The obtained Au TOH nanoparticles were washed with water three 

times, and finally redispersed in 4.0 mL of water. 
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    Au ETHH nanoparticles were prepared following a previously protocol.
60

 Colloidal Au 

seeds were prepared by the reducing HAuCl4 with NaBH4 in the presence of CTAB. 

First, 5.0 mL of 0.5 mM HAuCl4 was mixed with 5 mL of 0.2 M CTAB solution. Then, 

1.0 mL of ice-cold, freshly prepared 6 mM NaBH4 was quickly injected into the mixture 

under magnetic stir (1200 rpm). The seed solution was stirred for 2 min and then left 

undisturbed for 30 min before use. To prepare the Au ETHH nanoparticle growth 

solution, 7.0 g of CTAB and 1.234 g of NaOL were dissolved in 250 mL of water at 60 

°C. The solution was cooled to 30 °C and then 24 mL of 4 mM AgNO3 was added. The 

mixture was kept undisturbed at 30 °C for 15 min, followed by the addition of 250 mL of 

1 mM HAuCl4. The solution became colorless after 90 min of stirring at 700 rpm and 2.1 

mL HCl (37 wt % in water, 12.1 M) was then introduced into the mixture. After another 

15 min of slow magnetic stir at 400 rpm, 1.25 mL of 64 mM ascorbic acid was added. 0.8 

mL of seed solution was injected into the growth solution and the mixture solution was 

vigorously stirred for another 30 s and then left undisturbed at 30 °C for 12 h for particle 

growth. The resulting Au ETHH nanoparticles were collected by centrifugation and 

finally redispersed in 30 mL of 0.1 M CTAC. 

    Characterizations. The morphologies and structures of the nanoparticles were 

characterized by bright-field TEM using a Hitachi H-8000 transmission electron 

microscope operated at an accelerating voltage of 200 kV. All samples for TEM 

measurements were dispersed in water and drop-dried on 300 mesh Formvar/carbon-

coated Cu grids. The structures of the nanoparticles were also characterized by SEM 

using a Zeiss Ultraplus thermal field emission scanning electron microscope. The 

samples for SEM measurements were dispersed in water and drop-dried on silicon 
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wafers. The atomic level structures of the nanoparticles were resolved by high-resolution 

HAADF-STEM using a JEOL 2100F 200 kV FEG-STEM/TEM microscopy equipped 

with a CEOS CS corrector on the illumination system. The samples for HAADF-STEM 

measurements were dispersed in water and drop-dried on 400 mesh Cu grids with 

ultrathin carbon support film (Electron Microscopy Science Inc.). The optical extinction 

spectra of the nanoparticles were measured on aqueous colloidal suspensions at room 

temperature, using a Beckman Coulter Du 640 spectrophotometer. Raman spectra were 

obtained on a Bayspec Nomadic
TM

 Raman microscopy built on an Olympus BX51 

microscope equipped with a 785 nm CW diode laser. 

    UV-vis Spectroscopic Measurements of Catalytic Reaction Kinetics. We used the 

hydrogenation of 4-nitrophenol by NaBH4 at room temperature as a model reaction to 

evaluate the catalytic activities of Au PNPs, QSNPs, and Au seeds. In a typical 

procedure, 0.2 mL of 1.0 mM 4-nitrophenol and 0.1 mL of 0.5 M NaBH4 (freshly 

prepared, ice-cold) were sequentially added to 2.6 mL of ultrapure water in a cuvette and 

mixed thoroughly. Then, 100 μL of Au PNPs solution were injected into the system. 

After thoroughly mixed for 5 s, UV-vis extinction spectra were collected in real time to 

monitor the catalytic reaction process. We compared the catalytic activities of Au PNPs, 

QSNPs, and Au seeds at the same particle concentration (3.0×10
8
 particles mL

-1
) and 

nominally the same surface area (the particle concentrations for PNPs, QSNPs, and Au 

seeds were 3.0×10
8
, 3.0×10

9
, and

 
6.0×10

12 
particles mL

-1
, respectively to keep the total 

surface areas available for catalysis the same). To recycle the Au PNPs, the particles was 

centrifuged (2500 rpm, 3min) upon depletion of 4-nitrophenol and the washed with water 

once and were redispersed in 100 μL of ultrapure water for next catalytic reaction cycle. 
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The effects of particle concentrations on the reaction kinetics were evaluated by adding 

different amounts of Au PNP catalysts (particle concentrations: 1.8×10
8
, 2.4×10

8
, 

3.0×10
8
, 3.6×10

8
, and 4.5×10

8
 particles mL

-1
).  

    Monitoring Reaction Kinetics by Time-Resolved SERS.  To use SERS to monitor 

the catalytic reactions, we first pre-adsorbed SAMs of 4-NTP onto the surfaces of Au 

PNPs. In a typical procedure, 500 µL colloidal suspension of Au PNPs with (~10
10

 

particles mL
-1

) were incubated with 500 µL ethanol solution of 50.0 μM 4-NTP overnight 

to form saturated SAMs of 4-NTP on the nanoparticle surfaces. Then, the 4-NTP-coated 

Au PNPs were centrifuged (3000 rpm, 3 min) and redispersed in 500 µL ultrapure water. 

The nanoparticle-catalyzed 4-NTP reduction occurred at room temperature upon the 

addition of 50 µL of PNPs, 20 µL of ultrapure water, and 30 µL of 100 mM NaBH4 in a 

0.5 mL Eppendorf centrifuge tube. The kinetics of the catalyzed reactions were measured 

in real time using time-resolved SERS. SERS spectra were obtained on a Bayspec 

Nomadic
TM

 confocal Raman microscopy built on an Olympus BX51 reflected optical 

system with a 785 nm continuous wave excitation laser. The excitation laser was focused 

on the reaction mixture using a 10× objective [Numerical Aperture (NA) = 0.30, working 

distance (WD) = 11.0 mm, Olympus MPLFLN]. The laser power was measured to be 

10.0 mW at the samples. Successive SERS spectra were collected during the reaction 

until complete reduction of 4-NTP into 4-ATP. We evaluated the catalytic activities of 

Au PNPs at various NaBH4 concentrations (10, 15, 20, 30, 50, 80, 120, and 160 mM) and 

various concentrations of  Au PNPs (3.0×10
9
, 4.5×10

9
, 6.0×10

9
, 7.5×10

9
, and 9.0×10

9
 

particles mL
-1

). The coverage of 4-NTP on surfaces of Au PNPs was controlled by 
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incubating the Au PNPs with different concentrations of 4-NTP. The total volume of the 

reaction mi ture was already fi ed at 100 μL.  

    NaBH4-Induced Desorption of 4-ATP from Au PNP Surfaces. We pre-adsorbed 4-

ATP onto the surfaces of Au PNPs, Au TOH, and Au ETHH nanoparticles by incubating 

500 µL of Au nanoparticles (~10
10

 particles mL
-1

) with 500 µL ethanol solution of 50.0 

μM 4-ATP overnight to form saturated SAMs of 4-ATP on the nanoparticle surfaces. 

Then, the nanoparticles were centrifuged (3000 rpm, 3 min) and redispersed in 500 µL 

ultrapure water. The desorption occurred at room temperature upon the addition of 50 µL 

of Au nanoparticles, 30 µL of ultrapure water, and 20 µL of 100 mM NaBH4 in a 0.5 mL 

Eppendorf centrifuge tube. The desorption kinetics was measured in real time using time-

resolved SERS. We compared the desorption rates of 4-ATP from Au PNPs, Au TOH, 

and Au ETHH nanoparticles under same particle concentration (7.5×10
9
 particles mL

-1
)
 

and same NaBH4 concentration (20 mM). We also investigated the desorption rates of 4-

ATP from Au PNPs under various NaBH4 concentrations (10, 20, 30, and 40 mM). 

3.3 Results and Discussions 

Subwavelength Au PNPs were fabricated using a versatile, room temperature seed-

mediated growth method we recently developed.
42

 This approach allows for the selective 

fabrication of various Au nanostructures, such as QSNPs, PNPs, and trisoctahedral 

(TOH) nanoparticles, through deliberate control over the particle growth kinetics. As 

demonstrated in detail in our previous publication,
42

 fast nanoparticle growth resulted in 

the selective formation of single-crystalline TOH nanoparticles enclosed by high index 

{221} facets, while slow nanoparticle growth favored the formation of multi-twinned 

QSNPs enclosed by thermodynamically stable low index {111} and {100} facets.  The 
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Au PNPs were found to be a unique structure resulting from the intermediate particle 

growth kinetics that fell between the kinetically favored regime and the 

thermodynamically controlled regime. As schematically illustrated in Figure 3.1A, we 

started with colloidal Au seeds prepared by reducing chloroauric acid (HAuCl4) with 

sodium borohydride (NaBH4) in the presence of cetyltrimethylammonium chloride 

(CTAC). The as-prepared Au seed particles were 2 + 0.2 nm in diameter and no plasmon 

resonance peak was observed in the optical extinction spectrum due to the small particle 

sizes. The growth of the Au PNPs was initiated by injecting various volumes of diluted 

Au seeds into the particle growth solution, which contained HAuCl4, CTAC, and 

appropriate amount of L-ascorbic acid (AA). Addition of HCl into the growth solution 

significantly slowed down the growth of the nanoparticles, leading to the formation of Au 

QSNPs.  The average sizes of the PNPs and QSNPs can be both fine-controlled in the 

range from ~ 50 nm to ~ 250 nm by simply adjusting the amount of Au seeds added into 

the growth solution. Figures 3.2B-2E show the scanning electron microscopy (SEM) and 

bright-field transmission electron microcopy (TEM) images of the Au PNPs and QSNPs 

with the same average overall particle size around 125 nm. While the QSNPs exhibited 

relatively smooth, multifaceted surfaces, the surfaces of the PNPs were porous and highly 

curved with pore diameters in the range from 5 nm to 30 nm. In this study, we used the 

PNPs and QSNPs of the same overall size (125 nm) to systematically investigate the 

effects of the nanoscale surface porosity on the catalytic activities of the subwavelength 

Au particles. 
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Figure 3.1. Morphologies of Au porous nanoparticles (PNPs) and Au quasi-spherical 

nanoparticles (QSNPs). (A) Schematics illustrating the fabrication of Au PNPs and Au QSNPs 

using a kinetically controlled seed-mediated growth method. (B) SEM and (C) bright-field TEM 

images of Au PNPs with diameters of 125 + 8 nm. The insets highlight one individual particle. 

(D) SEM and (E) bright-field TEM images of Au QSNPs with diameters of 125 + 11 nm. The 

inset of panel D shows the SEM image of one individual Au QSNP. 

 

    The catalytic hydrogenation of p-nitrophenol by NaBH4
19

 was used as a model reaction 

to quantitatively evaluate the catalytic activities of subwavelength Au PNPs, QSNPs, and 

2 nm Au seeds. In a basic environment, p-nitrophenolate ions showed a strong absorption 

peak at ~ 400 nm, whose intensity gradually decreased as the catalytic reduction reaction 

proceeded in the presence of NaBH4 and Au nanocatalysts (Figure 3.2A). Meanwhile, a 

new absorption band emerged at ~ 315 nm and became progressively more intense, 
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indicating the formation of the product, p-aminophenol.  The intensities of the absorption 

peak at 400 nm were used to quantify the concentration of p-nitrophenol as a function of 

reaction time, based on which the reaction kinetics was analyzed. In Figure 3.2B, we 

directly compare the kinetics of the reactions catalyzed by the Au seeds, PNPs, and 

QSNPs with the same particle concentration at 3.0×10
8
 particles mL

-1
. For all these 

experiments, the initial concentrations of p-nitrophenol and NaBH4 were kept at 66.7 M 

and 16.7 mM, respectively. In the absence of Au nanoparticles, no reaction was observed 

over extended time periods up to a few days. At the same nanocatalyst concentration, the 

Au PNPs exhibited much higher catalytic activity than the Au QSNPs. The 2 nm Au 

seeds, which were expected to be highly active as catalysts, also showed much slower 

reaction kinetics than the Au PNPs because of the much smaller total surface areas 

available for catalysis. Interestingly, an induction time in which no reduction took place, 

was observed regardless of the sizes and morphologies of the Au nanocatalysts. This 

induction time was previously observed in the p-nitrophenol reduction catalyzed by other 

Au nanostructures as well, which was hypothetically ascribed to the time required for p-

nitrophenol to diffuse and adsorb onto the Au surfaces
46, 47

 or the molecular adsorption-

induced surface restructuring of the Au nanocatalysts
48, 49

 before the reaction could be 

initiated. We also adjusted the particle concentrations to compare the reaction kinetics in 

the presence of nominally the same total surface areas of the nanocatalysts. As shown in 

Figure 3.2C, with the same total surface areas, Au seeds exhibited the highest catalytic 

activity, and the Au PNPs were still catalytically much more active than the Au QSNPs. 

Therefore, the nanoporosity-enhanced catalysis observed on the subwavelength Au 

nanoparticles should be interpreted as a result of not only the much larger surface areas 
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per particle but also, more essentially, the higher reactivity of the highly curved 

nanoporous surfaces of Au PNPs than the relatively smooth surfaces of Au QSNPs. 

 

Figure 3.2. Comparison of catalytic activities of Au PNPs, Au QSNPs, and Au seeds (~ 2 nm). 

(A) Time-resolved extinction spectra of the reaction mixtures during the nanoparticle-catalyzed 

hydrogenation of 4-nitrophenol (4-NP) by NaBH4. The time interval between two consecutive 

spectra is 30 s. (B) Absorption (normalized against the initial point) at the peak position for 4-NP 

(λ = 400 nm) as a function of reaction time in the absence and in the presence of nanoparticle 

catalysts with the same particle concentrations. In all cases, the concentrations of p-NP and 

NaBH4 were 66.7 M and 16.7 mM, respectively. The concentrations of the Au PNPs, QSNPs, 

and seeds were all 3.0×10
8
 particles mL

-1
. (C) Absorption (normalized against the initial point) at 

λ = 400 nm as a function of reaction time in the presence of nanoparticle catalysts with roughly 

the same the same total surface areas. In all cases, the concentrations of p-NP and NaBH4 were 

66.7 M and 16.7 mM, respectively. The concentrations of the Au PNPs, QSNPs, and seeds were 

3.0×10
8
, 3.0×10

9
, and

 
6.0×10

12 
particles mL

-1
. The error bars in Panels B and C represent the 

standard deviations obtained from five experimental runs. 
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    To gain further insights into the nanoporosity-enhanced catalytic activity, we used high 

resolution high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) to resolve the atomic-level surface structures of Au PNPs. The central 

panel of Figure 3.3 shows a HAADF-STEM image of one individual Au PNP, which 

exhibited porous and highly curved surface structures. Each Au PNP consisted of several 

monocrystalline domains packed together to form a twinned crystalline structure. 

HAADF-STEM images from four different monocrystalline regions labeled as i, ii, iii, 

and iv in the central panel, respectively, are shown with higher magnification in Figure 

3.3. The crystalline domains in these four regions were all imaged with the electron beam 

projected along the [110] zone axis, and the fast Fourier transform (FFT) patterns further 

confirmed the orientation and single-crystalline nature of each domain. Exposed facets 

with Miller indices of {100} and {111} were observed on relatively flat local regions, 

whereas at surfaces with convex or concave curvatures, a series of high-index facets with 

high densities of atomic steps and kinks were observed. The orientation of the high-index 

facets appeared to be highly localized and essentially defined by the local surface 

curvature. Although the overall characteristic dimensions of the nanopores and 

protrusions on the surfaces of the Au PNPs were much larger than 5 nm, the surface 

atomic steps and kinks well-mimicked the local surface structures of the catalytically 

active sub-5 nm Au nanoparticles. The Au PNPs also exhibited similar density of 

undercoordinated surface atoms on their surfaces in comparison to the dealloyed porous 

Au films. It has been reported that the residual Ag plays a key role in stabilizing the 

stepped and kinked surfaces of the dealloyed porous Au films.
31, 44

 In contrast, the Au 

PNPs were monometallic in nature with no residual Ag present on their surfaces. 
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Therefore, the high stability of the atomic steps and kinks on the surfaces of Au PNPs can 

be interpreted mostly likely as the consequence of the structural integrity of the particles 

and the surface stabilization by the capping ligand, CTAC.    

 

Figure 3.3. Atomic-level surface structures of Au PNPs. The central panel shows the HAADF-

STEM image of an individual Au PNP. Panels i, ii, iii and iv show the high-resolution HAADF-

STEM images of 4 different regions (i, ii, iii and iv) marked in the central panel. The inset in 

panel i is the fast Fourier transform (FFT) pattern of the region shown in panel i. The inset in 

panel iv is the FFT pattern of the region shown in panel iv. The high-resolution HAADF-STEM 

images were taken with the electron beam projected along the [110] zone axis. 
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    The Au PNPs exhibited extraordinarily robust catalytic activity toward the 

hydrogenation of 4-nitrophenol by NaBH4. As shown in Figure 3.4A, the Au PNPs could 

be recycled after the completion of the hydrogenation reaction and their catalytic activity 

was well-preserved over multiple reaction cycles. The observed robustness of catalytic 

activity was intimately tied to the structural stability of the Au PNPs. We found that the 

nanoscale porosity and highly curved surface features of the Au PNPs were both well-

preserved after three cycles of hydrogenation reactions (Figure 3.4B and 3.4C). High-

resolution HAADF-STEM images showed that after multiple cycles of reactions, the 

atomic steps and kinks on the surfaces of the Au PNPs were well-preserved and the 

fraction of the undercoordinated surface atoms was comparable to that of the freshly 

prepared Au PNPs, indicating the robustness of the surface structures of the Au PNPs 

during the catalytic reactions.  Although surface atomic migration during the reactions 

cannot be completely ruled out, such dynamic surface restructuring apparently did not 

result in the loss of the undercoordinated, catalytically active surface atoms. Since the 

plasmon resonance frequencies and extinction spectral lineshapes were sensitive to both 

the overall particle size and the surface morphologies of the Au PNPs,
42

 optical extinction 

spectroscopy was also used to track the structural changes of Au PNPs during the 

catalytic reactions. Extinction spectra of colloidal suspensions of freshly prepared Au 

PNPs and the Au PNPs collected after one, two, and three cycles of reactions showed 

almost identical spectral features, further verifying lack of morphological or structural 

changes of the Au PNPs during the catalytic hydrogenation reactions.    
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Figure 3.4. Robustness of the catalytic activities of Au PNPs. (A) Absorption (normalized against 

the initial point) at λ = 400 nm as a function of reaction time over three reaction cycles. In each 

cycle, the initial concentrations of p-NP and NaBH4 were 66.7 M and 16.7 mM, respectively. 

The concentrations of the Au PNPs was 3.0×10
8
 particles mL

-1
. The error bars represent the 

standard deviations obtained from five experimental runs. HAADF-STEM images of Au PNPs 

(B) before reactions and (C) after 3 cycles of catalytic reactions.  

 

    The catalytic hydrogenation of p-nitrophenol is a model reaction that has been widely 

used for the evaluation of catalytic activities of noble metal nanoparticles.
19

 It is known 

that the catalytic hydrogenation of p-nitrophenol by borohydride is a multistep process.
19

 

Borohydride ions first interact with the metallic nanoparticle surfaces and transfer an 

active hydrogen species to the particle surface to form metal hydrides. Once p-

nitrophenol molecules are adsorbed onto the surface of the nanoparticles, reduction of p-

nitrophenol is induced by the surface hydrogen species. The final step of the catalytic 

cycle is desorption of the product, p-aminophenol, from the nanoparticle surfaces. It is 

worth mentioning that the overall reaction kinetics measured by solution-phase UV-vis 
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absorption spectroscopy depends on the structures and surface properties of the 

nanocatalysts. Esumi et al.
50

 investigated the catalytic activity of bulky dendrimer-

stabilized metal nanoparticles and concluded that the reaction was diffusion controlled, 

whereas Ballauff and coworkers showed that the surface reaction became the rate limiting 

step when polymer-supported small Au nanoparticles were used as the catalysts.
48, 49

 

Assuming that the diffusion of the reactants to the nanocatalysts and all the 

adsorption/desorption steps are much faster than the surface catalyzed reaction step, the 

catalytic hydrogenation reaction is expected to obey pseudo-first order reaction kinetics 

in the presence of excessive borohydride and the analysis of the kinetic data can be done 

using the Langmuir-Hinshelwood (LH) model.
19,48,49

 As shown in Figure 3.5A, the 

hydrogenation of p-nitrophenol started after a certain period of induction time and 

followed a first-order rate law at the early stage of the reaction in the presence of 

excessive borohydride. An apparent initial rate constant was obtained through least 

square fitting of the linear part of the curves using the following equation: 

)()ln( 00

0

ttk
A

A
           (1), 

    where A is absorption intensity at 400 nm at particular time spots during the reaction, 

A0 is absorption intensity at 400 nm before the reaction started, t is the reaction time, t0 is 

the induction time, and k0 is apparent initial rate constant.    

    It is interesting that at later stages of the reaction, significant deviation from the first 

order rate law was observed, and the apparent rate constant became larger as the 

concentration of p-nitrophenol further went down. We hypothesized that the reaction 

might follow altered pathways at the later stages of the reaction when the coverage of p-

nitrophenol on the surfaces of the Au PNPs became low. The UV-vis spectroscopy results 
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shown in Figure 3.5A, unfortunately, did not provide further mechanistic insights into the 

possible reaction pathways. 

The reaction kinetics was also found to be sensitively dependent on the concentration 

of Au PNPs when fixed amounts of p-nitrophenol and borohydride were introduced. As 

shown in Figure 3.5B and 3.5C, the rate constant increased with a concomitant decrease 

in the induction time as the concentration of Au PNPs increased. The acceleration of the 

reaction at high Au PNP concentrations can be interpreted as a result of increased total 

surface areas available for catalysis. If we assume that the overall kinetics measured by 

UV-vis spectroscopy truly reflects the intrinsic kinetics of the surface reactions, the rate 

constant is expected to be proportional to the total surface area, or the concentration of 

Au PNPs based on the following equation: 

)()()
)(

tCSktCk
dt

tdC
0             (2), 

    where C(t) is the concentration of p-nitrophenol at time t, k0 is the initial rate constant, 

S is the total surface area of Au PNPs, and k
*
 is the rate constant normalized to S. 

However, the plots of k0 vs. particle concentration (CPNPs) showed significant deviation 

from a linear relationship, strongly indicating that the overall kinetics was not only 

determined by the surface-catalyzed molecular transformation but also further 

complicated by the molecular diffusion processes and the interactions between the 

molecules and Au PNPs. UV-vis absorption spectroscopy is only capable of measuring 

the overall reaction kinetics that involves multiple steps including the diffusion and 

surface adsorption of the reactants, the surface catalyzed reactions, and the desorption of 

the final products, and thus does not necessarily provide the information about the 

intrinsic kinetics and detailed mechanisms of the surface reactions. This inspired us to 
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gain more detailed, quantitative insights into the intrinsic kinetics and mechanisms of the 

surface catalyzed reactions through time-resolved SERS measurements. 

 

Figure 3.5. Kinetics of hydrogenation of 4-NP by NaBH4 catalyzed by Au PNPs at different 

particle concentrations. (A) Natural logarithms of absorption (normalized against the initial point) 

at λ = 400 nm as a function of reaction time at different particle concentrations as labeled in the 

figures. The solid lines show the least square results to the linear part of the curves at the early 

stage of the reactions. Plots of (B) the initial rate constant (k0) and (C) induction time (t0) as a 

function of particle concentration (CPNPs).  

 

In addition to their superior catalytic properties, Au PNPs also possess unique 

plasmonic properties highly desirable for single-particle SERS.
42

 Although the overall 

particle sizes were similar, the localized plasmon resonance of the PNPs exhibited 

significant spectral red-shift in comparison to that of the QSNPs, and was tuned to be 
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resonant with the near-infrared excitation laser (λexc = 785 nm) for SERS measurements. 

Drastically stronger Raman enhancements were observed from self-assembled 

monolayers (SMAs) of 4-nitrothiophenol (4-NTP) molecules adsorbed on colloidal Au 

PNPs than on the Au QSNPs. We have previously demonstrated both experimentally and 

theoretically that the Raman enhancements of 4-aminothiophenol (4-ATP) adsorbed on 

individual subwavelength Au PNPs are more than two orders of magnitude higher than 

those on Au QSNPs of the same overall particle sizes, approaching enhancement factors 

on the order of 10
6
 when the plasmon is on resonance with the excitation laser.

42
 

Previously published results of finite-difference time-domain (FDTD) calculations
42

 

showed that the near-field “hot-spots” for S RS were located precisely at the 

catalytically active, highly curved particle surfaces of the Au PNPs, providing a unique 

platform for the monitoring of surface-catalyzed molecular transformations by SERS. 

    To monitor the kinetics of the hydrogenation reaction using SERS, we immobilized a 

saturated SAM of 4-NTP onto the surfaces of Au PNPs through Au-thiol interactions. A 

confocal Raman microscope was used for the SERS measurements with the laser beam 

focused into a small volume (~ 100 pL) of the colloidal suspensions of 4-NTP-coated Au 

PNPs. In this confocal mode, each freely-diffusing Au PNP was exposed to the excitation 

laser for a short time period (within the diffusion time), effectively eliminating possible 

photo-reactions of 4-NTP
51

 and photo-induced damage of the samples. As shown in 

Figure 3.6A, 4-NTP had three characteristic vibrational bands in the SERS spectrum at 

1080, 1338, and 1571 cm
-1

, corresponding to C-S stretching (vCS), O-N-O stretching 

(vNO), and the phenol-ring modes, respectively.
52

 Upon exposure to 30 mM NaBH4, there 

was an induction time of ~ 100 s during which the SERS features of 4-NTP remained 
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unchanged. Because the 4-NTP molecules were pre-adsorbed on the surfaces of Au 

PNPs, this induction time was apparently not related to the diffusion and adsorption of 

the 4-NTP and was thus mostly likely due to the interactions of borohydride ions with the 

Au surfaces through which active surface hydrogen species were generated. Only when 

the concentration of the surface hydrogen species was built up to a certain threshold value 

can the catalytic hydrogenation of the surface-adsorbed 4-NTP be initiated. Once the 

hydrogenation reaction started, the intensities of both 1338 cm
-1

 and 1571 cm
-1 

Raman 

bands were observed to decrease progressively with the concomitant emergence of a new 

band corresponding to the phenol-ring modes (vCC) of 4-ATP at 1590 cm
-1

.
53

 All the 

vibrational modes observed in SERS correlate well with the bands in normal Raman 

spectra of 4-NTP and 4-ATP.
36

 Interestingly, at the intermediate stages of the reaction, 

Raman modes at 1140, 1388, and 1438 cm
-1

, which could be assigned to the characteristic 

vibrational modes of 4,4 -́dimercaptoazobenzene (DMAB),
54, 55

 were clearly resolved, 

allowing us to identify DMAB as the intermediate along the reaction pathway. We also 

found that while the SAMs of 4-NTP and DMAB were stable on the surfaces of Au 

PNPs, the final product, 4-ATP, dissociated from the Au PNP surfaces in the presence of 

excessive NaBH4, as the characteristic peaks of the vCS (1080 cm
-1

) and vCC (1590 cm
-1

) 

modes of 4-ATP both gradually decreased in intensity upon the completion of the 

hydrogenation reaction. It has been recently reported that NaBH4 induces desorption of 

small organothiol molecules from Au nanoparticle surfaces predominantly through 

organothiol displacement by hydride.
56, 57

 The SAMs of 4-NTP and DMAB appeared to 

be more robust against NaBH4-induced desorption than those of 4-ATP mostly likely due 

to the fact that 4-NTP and DMAB have delocalized electrons distributed over larger 
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conjugation systems than 4-ATP, which may optimize the charge distribution and thus 

enhance the stability of the surface-adsorbed molecules.
57

 The evolution of the peak 

intensities of the vNO mode (1338 cm
-1

) of 4-NTP, the vNN +vCC + βCH mode (1432 cm
-1

) 

mode of DMAB, the vCC mode (1590 cm
-1

) of 4-ATP, and the vCS  mode (1080 cm
-1

) as a 

function of reaction time was shown in Figure 3.6B. Based on the SERS results, a 

possible reaction mechanism was proposed and schematically illustrated in Figure 3.6C. 

The entire catalytic hydrogenation reaction may involve four key steps: (1) generation of 

surface-hydrogen species through interactions between borohydride ions and metal 

surfaces, which gave rise to the induction time; (2) reduction of surface-adsorbed 4-NTP 

by the surface-hydrogen species to form the intermediate, DMAB; (3) further reduction 

of DMAB into the final product, 4-ATP; and (4) desorption of 4-ATP from the metallic 

surfaces. 

To further confirm the NaBH4-induced desorption of 4-ATP from the surfaces of Au 

PNPs, we first saturated the surfaces of Au PNPs with 4-ATP SAMs and then exposed 

the 4-ATP-coated PNPs to 20 mM NaBH4. The NaBH4-induced 4-ATP desorption could 

be monitored in real time using SERS, as shown in Figure 3.7A. The stability of the 4-

ATP was found to be highly dependent on the surface curvature of the Au nanoparticles. 

4-ATP SAMs formed on Au trisoctahedral (TOH) and elongated tetrahexahedral (ETHH) 

nanoparticles were much more stable than those on the Au PNPs with almost no 

detectable desorption when exposed to 20 mM NaBH4 (Figure 3.7B). Although both Au 

TOH and ETHH nanoparticles were also enclosed by catalytically active high index 

facets ({221} for TOH
58

 and {730} for ETHH particles
59

), their surfaces were relatively 

flat in comparison to the highly curved surfaces of Au PNPs. The nanoscale curvature of 
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Figure 3.6. Time-resolved SERS measurements of the Au PNP-catalyzed hydrogenation of 4-

NTP. (A) SERS spectra collected from SAMs of 4-NTP molecules on the surfaces of Au PNPs at 

different reaction times of 0, 180, 220, 240, 260, 280, 300, and 350 s after exposure to 30 mM 

NaBH4. (B) The intensities of Raman peaks at 1334 cm
-1

, 1080 cm
-1

, 1432 cm
-1

, and 1590 cm
-1

 as 

a function of reaction time. The error bars represent the standard deviations obtained from five 

experimental runs. (C) Schematic illustration of the surface-adsorption of BH4
-
, the hydrogenation 

of surface-adsorbed 4-NTP (reactant) to DMAB (intermediate), and finally to 4-ATP (product), 

and  the subsequent NaBH4-induced desorption of 4-ATP from the surfaces of Au PNPs.  

 

the Au PNP surfaces may decrease the stability of the 4-ATP SAMs, which makes the 

surface-adsorbed 4-ATP more vulnerable to NaBH4. This is in line with previous 

observation that SAMs of organothiols were more stable on the surfaces of larger Au 

nanoparticles than on smaller Au nanoparticles.
57

 As shown in Figure 3.7C, the kinetics 

of the 4-ATP desorption was also dependent on the concentration of NaBH4. Higher 

NaBH4 concentration resulted in faster desorption kinetics. Similar to the catalytic 
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hydrogenation reaction, an induction time was also observed during the NaBH4-induced 

4-ATP desorption, which became shorter as the concentration of NaBH4 increased.  

We chose the O-N-O stretching (vNO) mode of 4-NTP at 1338 cm
-1

 to quantify the 

fraction of reactant at various reaction times, based on which the kinetics of the reactant 

consumption was analyzed (Figures 3.8A). In our SERS measurements, NaBH4 was in 

excess and its concentration remained constant throughout the entire reaction process. 

Therefore, this surface reaction obeyed pseudo-first-order kinetics and the rate constants 

could be determined by performing least square curve fitting to the reaction trajectories 

shown in Figures 3.8A using the following rate equation: 

)()ln( 0app

0

ttk
I

I
           (3), 

 

where I is intensity of vNO mode at particular time spots during the reaction, I0 is 

intensity of vNO mode before the reaction started, t is the reaction time, t0 is the induction 

time, and kapp is apparent first order rate constant.  

The kinetic curves obtained through SERS measurements (Figure 3.8A) exhibited 

two remarkable features that were strikingly different from the solution-phase UV-vis 

spectroscopy results shown in Figure 3.5. First, the reactions obeyed the first order rate 

law throughout the entire reaction process until the depletion of 4-NTP. Second, both the 

apparent rate constant and the induction time were independent on the concentration of 

Au PNPs (Figure 3.8B and 3.8C). These features strongly indicate that performing SERS 

measurements on pre-adsorbed reactants allows one to resolve the intrinsic kinetics of the 

surface-catalyzed reactions with minimal interference from the diffusion, adsorption, and 

desorption of the reactants and products. 
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Figure 3.7. NaBH4-induced desorption of 4-ATP from the surfaces of Au PNPs. (A) SERS 

spectra collected from 4-ATP molecules adsorbed on the surfaces of Au PNPs at different 

reaction times of 0, 20, 40, 60, 80, 100, and 150 s after exposure to 20 mM NaBH4. (B) Raman 

intensities at 1080 cm
-1

 (normalized against the initial point) as a function of time for SAMs of 4-

ATP adsorbed on the surfaces of Au PNPs, Au elongated tetrahexahedral (ETHH) nanoparticles, 

and Au trisoctahedral (TOH) nanoparticles exposed to 20 mM NaBH4. (C) Raman intensities at 

1080 cm
-1

 (normalized against the initial point) as a function of time for SAMs of 4-ATP 

adsorbed on the surfaces of Au PNPs upon exposure to 10, 20, 30, and 40 mM NaBH4. The error 

bars in Panels B and C represent the standard deviations obtained from five experimental runs. 
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Figure 3.8. Effects of Au PNP concentrations on the kinetics of hydrogenation of surface-

adsorbed 4-NTP SAMs. (A) Natural logarithms of Raman intensity at 1334 cm
-1

 (normalized 

against the initial point) as a function of time upon exposure to 30 mM NaBH4 in the presence of 

various concentrations of Au PNPs as labeled in the figure. The error bars represent the standard 

deviations obtained from five experimental runs. (B) The apparent rate constant (kapp) and (C) 

induction time (t0) as a function of Au PNP concentration (CPNP). 

 

    Assuming that the surface-catalyzed hydrogenation is an elementary reaction between 
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where θ4-NTP and θBH4
- are the relatively degree of surface coverage by 4-NTP and 

BH4
-
, respectively, k is the molar rate constant per unit surface area, S is the surface area 

of the Au PNPs, and a is a fractional constant. Since a saturated SAM of 4-NTP was pre-
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to θBH4
-
.  In Figure 3.9A, we show the kinetic curves obtained from time-resolved SERS 

measurements in the presence of various concentrations of NaBH4. The kapp and t0 values 

as a function of NaBH4 concentrations (CNaBH4) were plotted in Figure 3.9B and 3.9C, 

respectively. The kapp progressively increased while t0 decreased as CNaBH4 increased until 

reaching a plateau at CNaBH4 above 120 mM. We performed least square curve fitting 

using the Langmuir adsorption isotherm (Equation 5) and Hill equation (Equation 6), 

respectively. 

4

4

4

NaBH

NaBH

BHapp
C1

C
aak




 




           (5), 

n

NaBHa

n

NaBH

BHapp

4

4

4 CK

C
aak


            (6), 

where α and Ka are two constants describing the binding affinities between the 

molecules and substrates and n is the Hill coefficient rated to the adsorption 

cooperativity. The major difference between these two models is that Hill equation 

includes the cooperativity of molecular adsorption whereas the Langmuir monolayer 

adsorption model does not consider the adsorption cooperativity. The best fitting results 

obtained using these two models were shown as the solid and dash curves in Figure 3.9B. 

It is apparent that the Hill equation gave us much better fit to the experimental results 

than the Langmuir adsorption isotherm. Previous studies showed that the adsorption of 

NaBH4 onto the polymer-supported ~ 2nm Au nanoparticles followed the Langmuir 

adsorption isotherm.
48, 49

 However, our results strongly indicate that the adsorption of 

NaBH4 onto the surfaces of Au PNPs was highly cooperative because the least square 

curve fitting gave a Hill coefficient (n) of 2.35 + 0.23, which was much larger than 1. The 

surface structures of the Au PNPs were fundamentally different from the sub-5 nm Au 
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nanoparticles. While each sub-5 nm Au nanoparticle only has limited surface areas 

accessible to adsorbate molecules, the total surface area of each subwavelength PNP is 

much larger and may thus accommodate much larger numbers of molecules. The local 

curvature of the PNPs surfaces may also facilitate the cooperative binding of adsorbate 

molecules onto the Au surfaces. Although the origin of such adsorption cooperativity still 

remains unclear, our results clearly indicate that BH4
-
 adsorbs onto the nanoporous Au 

surfaces in a highly cooperative manner.  

 

Figure 3.9. Effects of NaBH4 concentrations on the kinetics of hydrogenation of 4-NTP SAMs 

adsorbed on Au PNPs. (A) Natural logarithms of Raman intensity at 1334 cm
-1

 (normalized 

against the initial point) as a function of time upon exposure to various concentrations of NaBH4 

as labeled in the figure. The error bars represent the standard deviations obtained from five 

experimental runs. (B) The apparent rate constant (kapp) and (C) induction time (t0) as a function 

of NaBH4 concentration (CNaBH4). 
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found to be cooperative and followed the Hill equation very well with a Hill coefficient 

of 2.31 + 0.32, which was extremely similar to that of NaBH4. Although the cooperative 

adsorption on the Au PNP surfaces appeared to be general for various adsorbate 

molecules, whether the cooperative adsorption is a unique feature of the nanoporous 

surface structures still remains an open question at this stage. In Figure 3.10B, we show 

the spectral evolution of 4-NTP adsorbed on Au PNPs at a nominal θ4-NTP of 47% during 

the catalytic hydrogenation reaction. At this unsaturated 4-NTP coverage, the surface-

adsorbed 4-NTP molecules were more separated from each other in comparison to the 

saturated coverage, and thus the formation of DMAB, which required two 4-NTP 

molecules in close proximity to each other, was suppressed. No spectroscopic features of 

DMAB were observed in the SERS spectra during the reaction (Figure 3.10B), indicating 

that the hydrogenation reaction might have switched to an alternative reaction pathway. 

At low 4-NTP coverages, the catalytic hydrogenation reaction may undergo a direct 

transformation from 4-NTP to 4-ATP or an altered pathway involving extremely short-

lived transient intermediates that are not resolvable by the time-resolved SERS 

measurements. As shown in Figure 3.10C-E, as the surface coverage of 4-NTP decreased, 

the rate constant became significantly larger and the induction time became shorter. This 

can be interpreted as a consequence of larger surface areas available for NaBH4 

adsorption when 4-NTP coverage became lower. The SERS results presented here 

provide quantitative insights into the 4-NTP coverage-dependent reaction kinetics, which 

can be used to interpret the deviation from the pseudo-first-order kinetics at late stages of 

the reactions observed by UV-vis spectroscopic measurements (see Figure 3.5). 
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Figure 3.10. Effects of surface-coverage of 4-NTP (θ4-NTP) on the hydrogenation kinetics. (A) 4-

NTP coverages (θ4-NTP) as a function of 4-NTP concentration (C4-NTP). (B) SERS spectra collected 

from 4-NTP absorbed on surfaces of Au PNPs (incubated with 4-NTP of 2 M, θ4-NTP = 0.47) at 

different reaction times of 0, 50, 100, 200, 300, 400, 500, and 600 s upon exposure to 10 mM 

NaBH4. (C) Natural logarithms of Raman intensity at 1334 cm
-1

 (normalized against the initial 

point) as a function of time upon exposure to 10 mM NaBH4 in the presence of Au PNPs at a 

concentration of 7.5×10
9
 particles mL

-1
 for different surface-coverages of 4-NTP as labeled in the 

figure. The error bars represent the standard deviations obtained from five experimental runs. (D) 

The apparent rate constant (kapp) and (E) induction time (t0) as a function of 4-NTP surface 

coverage (θ4-NTP). 

 

3.4 Conclusions 

In summary, subwavelength Au PNPs possess highly curved, porous surfaces with high 
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catalytically active surfaces of oxide-supported sub-5 nm Au nanoparticles and dealloyed 

nanoporous Au membranes. The catalytically active surface structures of the Au PNPs 

were highly robust and the catalytic activity of Au PNPs was well-preserved over 

multiple cycles of catalytic hydrogenation reactions. The Au PNPs also provide a 

compositionally simple, free-standing nanocatalyst system that enables direct correlation 

of catalytic activities with surface structures without complication introduced by the 

oxide supports and residual less-noble elements. Meanwhile, the nanoscale surface 

porosity dramatically enhances the tunability of localized plasmon resonances and 

optimizes the near-field enhancements of the subwavelength particles for single-particle 

SERS under near-infrared excitations. Using catalytic hydrogenation of 4-NTP as a 

model reaction, we have demonstrated that the dual functionality of Au PNPs opens up 

unique opportunities for us to develop detailed, quantitative understanding of the intrinsic 

kinetics and mechanisms of surface-catalyzed reactions through noninvasive in situ SERS 

measurements. The knowledge gained through this work provides significant new 

insights on the structure-property relationship of Au nanocatalysts and sheds light on the 

kinetics and mechanisms of the interfacial molecular transformations catalyzed by 

nanoarchitectured Au surfaces.    
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CHAPTER 4 

Gold Nanoparticles with Tipped Surface Structures as Substrates for Single-

Particle Surface-Enhanced Raman Spectroscopy: Concave Nanocubes, 

Nanotrisoctahedra, and Nanostars 
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4.1 Introduction 

Surface-enhanced Raman scattering (SERS) is an ultrasensitive vibrational spectroscopic 

technique capable of providing detailed structural information of the molecules on or in 

the vicinity of nanostructured metallic surfaces.
1-4

 As a powerful, noninvasive 

spectroscopic tool for the detection of low-abundance analytes, SERS plays pivotal roles 

in food safety inspection,
5, 6

 environmental monitoring,
7
 and biomolecular sensing.

8-11
 By 

combining plasmonic metallic nanoparticles with molecular Raman reporters, 

multifunctional SERS nanoprobes, or SERS tags, have been developed to target specific 

biomolecules both in vitro and in vivo, enabling Raman-based optical bioimaging with 

high spatial resolution and excellent photostability.
12-16

 SERS is essentially a nanoscale 

effect directly related to the intense electromagnetic field enhancements generated at 

nanostructured metallic surfaces upon the excitation of localized surface plasmon 

resonances (LSPRs).
1, 2, 17

 Due to strong plasmonic coupling effects,
18

 aggregated or self-

assembled metallic nanoparticles possess “hot spots” for S RS inside the sub-10 nm 

interparticle gaps with gigantic field enhancements several orders of magnitude higher 

than those commonly achievable on the individual nanoparticles.
18-22

 Although it is 

possible to detect the Raman signals of just a few or even single molecules inside the tiny 

interparticle junctions,
23-26

 these hot spots only account for a small portion of the total 

surface areas accessible by the analyte molecules, resulting in huge heterogeneity and 

poor reproducibility of Raman signals across the entire substrates.
27

 The challenges 

associated with precise control over the spatial distribution, enhancement magnitude, and 

structural robustness of the interstitial hot spots limit the utilization of the nanoparticle 

aggregates as reliable and reproducible SERS substrates for sensing and imaging 
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applications. For in vivo bioimaging, it is also highly desirable to use individual 

plasmonic nanoparticles uniformly appended with Raman reporters as the SERS tags 

rather than using the nanoparticle aggregates.
28-30

 Therefore, single-particle SERS 

(spSERS) represents a more promising approach to SERS-based sensing and imaging 

with optimizable signal amplification and reproducibility in comparison to those 

strategies relying on the nanoscale interparticle junctions. 

    The plasmonic field enhancements of individual nanoparticles can be optimized 

through deliberate control over particle geometries.
17, 31, 32

 While individual Au or Ag 

solid nanospheres exhibit modest field enhancements upon plasmonic excitation, 

multilayered metallic nanoparticles, also known as nanomatryoshkas, possess 

intraparticle SERS hot spots confined inside the narrow interior gaps.
28, 33, 34

 Although 

individual multilayered nanoparticles may serve as excellent SERS probes for bioimaging, 

the interior intraparticle gaps are not readily accessible by the analyte molecules when 

used for SERS sensing. Individual nanoparticles with hot spots exposed on their outer 

surfaces are thus, more appealing for molecular sensing applications. A widely used 

strategy of achieving intense field enhancements on the outer surfaces of individual 

nanoparticle is to controllably introduce nanoscale tipped or spiky features to the particle 

surfaces.
35-47

 Upon plasmonic excitation, the electromagnetic fields are enormously 

enhanced at the surface vertices and edges, providing SERS hot spots on open surfaces 

that are easily accessible by molecules. A variety of Au or Ag nanoparticles with tipped 

surface features, such as surface-textured nanospheres,
35-40

 etched nanopolyhedra,
41

 

multi-branched nanostars,
42-45

 and spiky nanoshells,
46, 47

 have all been shown to exhibit 

intense SERS enhancements on individual particles, convincingly demonstrating that the 
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interparticle or intraparticle gap geometries are not always essential for strong SERS 

enhancements. 

    Another key design objective in spSERS optimization is to tailor the LSPRs of 

individual nanoparticles relative to the excitation laser wavelength
48, 49

 because the on-

resonance excitations typically generate much higher Raman enhancements than the off-

resonance excitations. However, the far-field extinction maximum does not overlap 

exactly with the wavelength at which the largest near-field enhancements are achieved. 

Van Duyne and coworkers observed that on Ag nanoparticle arrays, the maximum SERS 

enhancement was achieved when the far-field plasmon band position was red-shifted 

compared to the excitation laser wavelength.
49

 In contrast to this result, more recent 

experimental observations and electrodynamic calculations on various metallic 

nanostructures showed that the maximum near-field enhancements occurred at lower 

energies than the corresponding far-field LSPRs.
50-55

 Such red shift of the near-field peak 

energies with respect to the far-field resonance energies has been predicted to be a 

universal phenomenon for metallic nanostructures and can be theoretically interpreted 

using a driven and damped harmonic oscillator model.
51

 The relative spectral shift 

between near- and far-field resonances of plasmonic nanoantennas, however, depends 

strongly upon the size and shape of the nanoparticles
50-55

 and thus, needs to be further 

investigated more systematically and quantitatively on a wider variety of metallic 

nanostructures. 

    In this chapter, we study the far-field and near-field plasmonic properties of individual 

Au nanoparticles of three geometries, concave nanocubes, nanotrisoctahedra, and 

nanostars, with a particular focus on their performances as substrates for spSERS under 
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near-infrared excitation. These three Au nanostructures all possess tipped surface features 

and size-dependent LSPRs, allowing us to fine-tune their LSPRs with respect to the 

excitation laser wavelength and to quantitatively evaluate the size-dependent SERS 

enhancements on individual nanoparticles. The experimentally observed geometry 

dependence of the far- and near-field plasmonic properties is further corroborated by 

finite-difference time-domain (FDTD) calculations. These Au nanoparticles with tunable 

LSPRs in the near-infrared “water window” and nanoengineered hot spots on their tipped 

surfaces hold great promise as single-particle nanosensors and nanoprobes for SERS-

based biosensing and bioimaging applications.  

4.2 Experimental Section 

    Materials. Gold(III) chloride trihydrate (HAuCl4·3H2O, ACS grade) was purchased 

from J.T. Baker. Sodium borohydride (NaBH4, 99%), L-ascorbic acid (AA, 99.5+%), 

hydrochloric acid (HCl, 37%), and poly(4-vinylpyridine) (PVP, Mw~60,000) were 

obtained from Sigma-Aldrich. Silver nitrate (AgNO3, 99.9995% metals basis), (1-

Hexadecyl)trimethylammonium chloride (CTAC, 96%), and 4-aminothiophenol 

(C6H7NS, 4-ATP, 97%) were obtained from Alfa Aesar. Hydrogen peroxide (H2O2, 

30%), sulfuric acid (H2SO4, 96.10%), and ethanol (200 proof) were purchased from 

Fisher Scientific. All reagents were used as received without further purification. Glass 

microscope slides were obtained from Gold Seal Products (Portsmouth, NH). Ultrapure 

water (18.2 MΩ resistivity, Barnstead  asyPure II 7138) was used for all experiments. 

    Synthesis of Au Seeds. Colloidal Au seeds were prepared by the reducing HAuCl4 

with appropriate amounts of NaBH4 in the presence of CTAC. In a typical procedure for 

single-crystalline Au seed (~ 2 nm in diameter) preparation, 0.30 mL of ice-cold, freshly 
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prepared 10 mM NaBH4 were quickly injected into a solution composed of CTAC (10.00 

mL, 0.10 M) and HAuCl4 (0.25 mL, 10 mM) under magnetic stir (1200 rpm). The seed 

solution was stirred for 1 min and then left undisturbed for 2 h. The seed solution was 

diluted 1000-fold with CTAC (0.10 M) and the diluted seed solution was used for the 

subsequent seed-mediated growth. For the preparation of multi-twinned Au seeds (~ 3.5 

nm in diameter), the volume of 10 mM NaBH4 added into the HAuCl4-CTAC solution 

was increased to 0.60 mL while all the other experimental conditions remained 

unchanged.  

    Synthesis of Au Concave Nanocubes. Au concave nanocubes were prepared 

following a previous protocol based on seed-mediated growth
63

 with minor 

modifications. The growth solution was prepared by sequentially adding HAuCl4 (0.50 

mL, 10 mM), AgNO3 (0.1 mL, 10 mM), HCl (0.20 mL, 1.0 M), and AA (0.10 mL, 0.10 

M) into a CTAC (10.00 mL, 0.10 M) solution. After gently mixing the growth solution 

for 30 s, the growth of Au concave nanocubes was initiated by adding the diluted single-

crystalline Au seed solution. The reaction solution was gently mixed for 30 s and then left 

undisturbed at room temperature for 4 h. The obtained Au concave nanocubes were 

washed with water twice through centrifugation/redispersion cycles, and finally 

redispersed in 5.0 mL of water. The overall sizes of the resulting Au concave nanocube 

were controlled by adjusting the amount of Au seeds added. 

    Synthesis of Au Nanotrisoctahedra. Au nanotrisoctahedra were prepared following 

seed-mediated growth method we recently published.
65

 The growth solution was prepared 

by sequentially adding HAuCl4 (0.50 mL, 10 mM) and AA (1.0 mL, 0.10 M) into a 

CTAC (10.00 mL, 0.10 M) solution. After gently mixing the growth solution for 30 s, the 
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growth of Au nanotrisoctahedra was initiated by adding the diluted single-crystalline Au 

seed solution. The reaction solution was gently mixed for 30 s and then left undisturbed 

at room temperature for 4 h. The obtained Au nanotrisoctahedra were washed with water 

twice through centrifugation/redispersion cycles, and finally redispersed in 5.0 mL of 

water. The overall sizes of the resulting Au nanotrisoctahedra were controlled by 

adjusting the amount of Au seeds added. 

    Synthesis of Au Nanostars. Au nanostars were prepared under the same conditions as 

the concave nanocubes except that multi-twinned Au seeds were used instead of single-

crystalline Au seeds. Briefly, the growth solution was prepared by sequentially adding 

HAuCl4 (0.50 mL, 10 mM), AgNO3 (0.1 mL, 10 mM), HCl (0.20 mL, 1.0 M), and AA 

(0.10 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) solution. After gently mixing the 

growth solution for 30 s, the growth of Au nanostars was initiated by adding the diluted 

multi-twinned Au seed solution. The reaction solution was gently mixed and then left 

undisturbed at room temperature for 4 h. The obtained Au nanostars were washed with 

water twice through centrifugation/redispersion cycles, and finally redispersed in 5.0 mL 

of water. The overall sizes of the resulting Au nanostars were controlled by adjusting the 

amount of Au seeds added. 

    Characterizations. TEM and SAED measurements were performed using a Hitachi 

H-8000 transmission electron microscope operated at an accelerating voltage of 200 kV. 

SEM images were obtained using a Zeiss Ultraplus thermal field emission scanning 

electron microscope. The optical extinction spectra of the nanoparticles were measured 

on aqueous colloidal suspensions at room temperature, using a Beckman Coulter Du 640 

spectrophotometer. Raman spectra and dark-field optical microscopy images were 
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obtained on a Bayspec Nomadic
TM

 Raman microscopy built on an Olympus BX51 

microscope equipped with a 785 nm CW diode laser. 

    spSERS Measurements. Sub-monolayer films of isolated Au nanoparticles were 

prepared by immobilizing the particles onto poly(4-vinylpyridine)-functionalized glass 

substrates. In a typical procedure, glass slides were cleaned in a piranha solution (sulfuric 

acid:H2O2 = 7:3) for 15 min, and then immersed in a 1% wt. of poly(4-vinylpyridine) 

ethanolic solution for 24 h. The glass slides were thoroughly rinsed with ethanol, dried 

with N2 gas, and then immersed in colloidal suspensions of Au nanoparticles (1.0 X 10
9
 

particles mL
-1

) for 1 h. The glass slides were thoroughly rinsed with ethanol and dried 

with N2 gas after they were removed from the colloidal suspensions of Au nanoparticles. 

The coverage of Au nanoparticles on the substrates can be controlled by changing the 

immersion time.  

     The samples for spS RS e periments were prepared by evaporating 20 μL of a 1.0 

mM ethanolic solution of 4-ATP on the surfaces of the isolated Au nanoparticles on 

poly(4-vinylpyridine)-functionalized silicon substrates. The substrates were then 

thoroughly rinsed with ethanol and dried with N2 gas. Water was dropped onto the 

substrates to ensure that the surrounding medium of the Au nanoparticles was water, and 

then a clean glass coverslip with a 0.17 mm thickness was covered onto the top of the 

water layer before the Raman spectral collection. The distance between the two glass 

slides was about 0.5 mm. SERS spectra were obtained on a Bayspec Nomadic
TM

 Raman 

microscopy built on an Olympus BX51 reflected optical system equipped with a 785 nm 

 W diode e citation laser using the confocal mode (focal area of 2 μm in diameter). A 

50× dark field objective (NA=0.5, WD=10.6 mm, Olympus LMPLFLN-BD) was used 
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for both Raman signal collection and dark field scattering imaging. The laser beam was 

focused on one particle each time for Raman spectrum collection. The laser power 

focused on the samples was measured to be 3.6 mW and the spectrum acquisition time 

was 20 s. Normal Raman spectra of 4-ATP were collected on solid films of neat 4-ATP 

on the silicon wafers under the same conditions. 

    Enhancement Factor (EF) Calculations. We estimated the enhancement factors 

(EFs) of Raman signals using the following equation:  EF = (ISERS × Nnormal) / (Inormal × 

NSERS), where ISERS is the intensity of a specific band in the SERS spectra of 4-ATP; Inormal 

is the intensity of the same band in the normal Raman spectra of 4-ATP under the same 

condition; Nnormal is the number of probe molecules in the excitation volume for the 

normal Raman measurements; NSERS is the number of adsorbed molecules on an 

individual particle. Two Raman modes of 4-ATP at 1078 cm
-1

 and 1590 cm
-1

 were 

chosen for the EF calculations. To estimate the Nnormal, we calculated the effective 

excitation volume by using the following equation: V = π×(d/2)
2
×H, where d is the 

diameter of the beam size (d = 2 μm) and   is the effective depth of focus ( = 10 μm, 

which was estimated by finely controlling the height of the stage during the Raman 

measurements). We estimated an effective excitation volume of 3.14×10
-17

 m
3
 for our 

Raman microscopy with 785 nm excitation using the 50× objective. Then Nnormal was 

calculated by using the following expression: Nnormal = (V×D/M)×NA = 1.80 ×10
11

 

molecules, where D is the density of 4-ATP (1.17 g/mL), M is the molar mass of 4-ATP 

(125 g/mol) and NA is the Avogadro constant (6.02×10
23

 mol
−1

). To determine NSERS, a 

self-assembled monolayer of 4-ATP molecules (molecular footprint size of 0.39 nm
2
)
70

 

was assumed to be closely packed on the surface of each Au particle. The surface area of 
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the particle was estimated as follows: (1) Au concave nanocubes: when the indentation 

angle is 140°, the surface area were calculated as S= 6×D
2
×(1/sin(70°)); (2) Au 

nanotrisoctahedra: the surface area was calculated as S= 7.09×D
2
; (3) Au nanostars: the 

surface area was roughly calculated as S= 1.52×D
2
. In this way we were able to estimate 

the NSERS values on nanoparticles with different size and then calculate the EFs. 

    FDTD Calculations. FDTD calculations were performed using a commercial FDTD 

software package (Lumerical Solutions). Dielectric permittivity tabulated by Johnson and 

Christy
80

 was used for Au. The geometric parameters used in the simulations for the Au 

concave nanocubes, nanotrisoctahedra, and nanostars were extracted from the 

experimental TEM and SEM images. FDTD calculations were performed on single 

nanoparticles in water (refractive index of 1.34). The near-field enhancements were 

calculated for an excitation at 785 nm in all the cases. To account for the small 

morphological details and ensure a good numerical convergence, a uniform FDTD 

meshgrid of 1 nm was used. 

4.3 Results and Discussions 

4.3.1. Shape-Controlled Synthesis of Au Concave Nanocubes, Nanotrisoctahedra, 

and Nanostars.  

Control over particle geometries allows one to fine-tune the LSPRs and surface properties 

of Au nanoparticles to match specific applications. For face-centered cubic (fcc) Au 

nanoparticles, the low-index {111} and {100} facets have the lowest surface energies and 

are thus, thermodynamically much more stable than {110} and other high-index facets.
56

 

As a consequence, Au nanoparticles enclosed by the low energy facets, such as 

nanocubes enclosed by 6 {100} facets, nanooctahedra enclosed by 8 {111} facets, and 
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multi-twined quasi-spherical nanoparticles with multi-faceted surfaces enclosed by {111} 

and {100} facets, represent the most common nanoparticle geometries that are 

experimentally realizable. It has been recently demonstrated that Au nanoparticles of 

more complex geometries enclosed by various high-index facets can be fabricated 

through deliberate control over the nanoparticle growth kinetics and/or selective surface 

passivation.
57-64

 Here we focus on three nanoparticle geometries with tipped surface 

structures: concave nanocubes, nanotrisoctahedra, and nanostars. As illustrated in Figure 

4.1, the concave nanocube is considered to be derived from a nanocube upon introduction 

of tetragonal indentation to each {100} facet. A nanotrisoctahedron can be obtained by 

adding convex trigonal pyramids to each {111} facet of a nanooctahedron. By growing 

nanoscale tips perpendicular to each exposed facet of a multi-twinned quasi-spherical 

core, a multi-branched star-shaped nanoparticle can be obtained. As demonstrated in 

greater detail later in this paper, the Au concave nanocubes, nanotrisoctahedra, and 

nanostars exhibit significantly enhanced plasmonic tunability and improved performances 

as substrates for spSERS in comparison to the geometrically simpler nanocubes, 

nanooctahedra, and quasi-spherical nanoparticles.  

    As illustrated in Figure 4.2, we adopted a seed-mediated growth method for the shape-

selective fabrication of monodisperse Au concave nanocubes, nanotrisoctahedra, and 

nanostars. Starting with single-crystalline quasi-spherical Au seeds, Au nanotrisoctahedra 

were obtained through kinetically controlled seeded nanocrystal growth. As demonstrated 

in previous publications,
58, 59, 62, 65

 the Au nanotrisoctahedron is a kinetically favored 

geometry resulting from fast nanoparticle growth processes, while slower growth kinetics  
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Figure 4.1. Schematics illustrating the geometries of Au concave nanocube, nanotrisoctahedron, 

nanostar, nanocube, nanooctahedron, and multi-twinned quasi-spherical nanoparticle.  

 

favors the formation of thermodynamically more stable geometries, such as nanocubes, 

nanooctahedra, and quasi-spherical nanoparticles. Interestingly, by introducing 

appropriate amount of Ag
+
 into the reaction mixtures, Au concave nanocubes were 

obtained as a result of the selective passivation of Au surfaces by Ag
+
.
63

 Changing the 

single-crystalline seeds to multi-twinned seeds allowed for the fabrication of multi-

branched Au nanostars. As a consequence, the Au nanostars had multi-twinned 

crystalline structures while the nanotrisoctahedra and concave nanocubes were both 

single-crystalline in nature. The capability to fine-control the particle size in each 

geometry allowed us to gain quantitative insights into the size-dependent plasmonic 

properties and spSERS performances of the nanoparticles.   

cube

concave cube trisoctahedron

octahedron
multi-twinned 

quasi-sphere

star



www.manaraa.com

 

97 

 

Figure 4.2. Schematics illustrating the shape-controlled synthesis of Au nanotrisoctahedra, 

concave nanocubes, and nanostars through seed-mediated nanoparticle growth.  

 

4.3.2. Au Concave Nanocubes.  

The concave nanocube is an interesting geometry with 24 equivalent indented facets 

whose miller indices are determined by the degree of indentation. Figure 4.3A shows a 

transmission electron microscopy (TEM) image of Au concave nanocubes with average 

edge-length of ~ 130 nm. Each concave nanocube appeared to exhibit darker contrast in 

the interior regions compared to the edge regions. Concave nanocubes with different 

orientations with respect to the TEM grid exhibited different overall projection profile 

and contrast evolution across the particle cross-sections in the TEM images. The 

morphology of concave nanocubes was also characterized by scanning electron 

microscopy (SEM). The tetragonal indentation and the boundaries between adjacent 

indented facets can be both clearly visualized in the SEM image taken on one individual 
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concave nanocube (inset image of Figure 4.3A). Low-magnification SEM image further 

reveals that the as-fabricated Au concave nanocubes were highly monodisperse in terms 

of both particle size and morphology. Figure 4.3B shows the TEM image of one concave 

nanocube imaged with the electron beam projected along the [001] zone axis. The 

particle orientation and single-crystalline fcc structures of the concave nanocube were 

further verified by selected area electron diffraction (Figure 4.3C). While the Au concave 

nanocube appeared to have a cubic morphological outline, the degree of indentation 

could be characterized by measuring the indentation angles (the dihedral angel between 

indented facets) based on the different contrast in the TEM image. As marked in Figure 

4.3B, the average indentation angle was measured to be ~ 139°, indicating that each Au 

concave nanocube was enclosed by 24 high-index {830} facets. The as-fabricated 

particles exhibited a higher degree of indentation in comparison to the Au concave 

nanocubes enclosed by {720} facets (indentation angle of 148°) fabricated by Mirkin and 

coworkers.
63

  As shown in Figures 4.3D-3J, we were able to fine-control the edge-lengths 

of the concave nanocubes in the range from ~ 50 nm to over 150 nm by simply adjusting 

the amount of Au seeds added into the growth solutions. Unlike some other seeded 

growth methods through which the nanoparticles evolve into different morphologies as 

the particle size increases,
66, 67

 the concave cubic morphology of the particles fabricated 

using this protocol was well preserved throughout the entire particle size tuning range.  



www.manaraa.com

 

99 

 

Figure 4.3. (A) TEM image of Au concave nanocubes with average edge length, D, of 130 nm. 

The inset is an SEM image of one individual concave nanocube. (B) TEM image of one 

individual concave nanocube with the electron beam projected along the [001] direction. The 

measured dihedral angles between the concave facets were marked. (C) SAED pattern obtained 

from the particle in panel B. (D-I) SEM images of Au concave nanocubes with different average 

edge lengths obtained by adding (D) 0.5 mL, (E) 0.1 mL, (F) 0.05 mL, (G) 0.025 mL, (H) 0.015 

mL, and (I) 0.01 mL of Au seed solution. (J) Histograms showing the size distributions of Au 

concave nanocubes shown in panels D-I.  

 

Au concave nanocubes displayed size-dependent tunable LSPRs. Figure 4.4A shows 

extinction spectra of colloidal Au concave nanocubes of various average edge-lengths at 

particle concentration of ~ 1.0 X 10
9
 particle mL

-1
. As the particle size increased, the 

LSPRs progressively red-shifted and the extinction intensities at the resonance 

wavelengths increased. For concave nanocubes in the sub-100 nm size regime, the 
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extinction spectra were dominated by a single-peaked dipole plasmon band, while 

multiple LSPR peaks were observed when the edge-lengths were beyond 100 nm. In 

comparison to Au nanocubes of the same edge-lengths, Au concave nanocubes displayed 

significantly red-shifted LSPRs and more complex spectral line-shapes in the optical 

extinction spectra. It has been reported that Au concave nanocubes exhibit greatly 

improved SERS performance in comparison to Au nanocubes and nanospheres of same 

size due to the intense field enhancements at sharp tips.
68

 In addition to the particle 

geometries, the coupling between LSPRs and the excitation laser is also a key factor that 

determines SERS enhancements. The size-dependent LSPRs of concave nanocubes 

allowed us to fine-tune their LSPRs with respect to the excitation laser wavelength (785 

nm) and quantify the spSERS enhancements as a function of particle sizes.  

To measure spSERS, a sub-monolayer of isolated Au concave nanocubes was 

immobilized on a poly(4-vinylpyridine)-functionalized glass substrate
47, 69

 and was used 

as substrate for spSERS measurements. The individual nanoparticles were well separated 

from each other with interparticle distances much larger than the size of each particle. 

Therefore, interparticle plasmonic coupling was negligible and should have no 

contribution to the Raman enhancement. The large interparticle distances also allowed us 

to focus the laser beam on one particle each time using a confocal Raman microscope to 

collect spSERS signals. 4-aminothiophenol (4-ATP) was chosen as a Raman reporter for 

the quantification of SERS enhancements because it is a nonresonant molecule with 

minimal chemical enhancements under near-infrared excitation and forms uniform self-

assembled monolayers (SAMs) on Au surfaces with known packing density.
70

 Figure 

4.4B shows the representative SERS spectra of 4-ATP adsorbed on individual Au 
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concave nanocubes of various sizes. Two intense Raman bands at 1078 cm
-1

 and 1590 

cm
-1

 were observed in the SERS spectra, corresponding to the C-S stretching mode and 

phenol ring C-C stretching mode, respectively.
19

 We collected SERS spectra of 4-ATP 

SAMs on Au concave nanocubes from more than 100 individual particles for each 

sample one particle at a time and the intensity histograms of the 1078 cm
-1

 and 1590 cm
-1

 

bands are shown in Figures 4C. Maximum SERS signals were obtained on the sample 

whose far-field plasmon band position was blue-shifted by ~ 30 nm in wavelength with 

respect to the excitation laser. Murphy and coworkers
55

 have recently observed a similar 

trend on colloidal suspensions of plasmonically tunable Au nanorods and they interpreted 

their results as a consequence of competition between plasmon-enhanced Raman 

scattering and light re-absorption along propagation pathway through the colloidal 

samples. Interestingly, we observed the same trend on surface-immobilized 

submonolayer of concave nanocubes where re-absorption effects were negligible, 

strongly indicating that the blue-shift of LSPRs relative to the optimal excitation 

wavelengths should be a universal feature for metallic nanoparticles regardless of 

whether they are immobilized on a surface or suspended as colloids. We further estimated 

the enhancement factors (EFs) by comparing the SERS signals to the normal Raman 

intensities obtained from neat 4-ATP films (Figure 4.4D). The EFs were estimated to be 

the orders of 10
4
-10

5
, approaching 10

6
 when the LSPR was tuned to the optimal spectral 

region with respect to the excitation laser. These estimated EFs were averaged over the 

entire particle surfaces. The local enhancements in the hot spots at the tips, however, are 

anticipated to be at least one or two orders of magnitude higher.  
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Figure 4.4. (A) Experimental extinction spectra of colloidal Au concave nanocubes of various 

sizes at particle concentration of ~1.0 × 10
9
 particles mL

-1
. The vertical dashed line shows the 

excitation laser wavelength (785 nm) for Raman measurements. (B) Representative SERS spectra 

of 4-ATP adsorbed on individual concave nanocubes of various sizes. Histograms of the Raman 

intensity of (C) 1078 cm
-1

 mode and (D) 1590 cm
-1

 mode obtained from individual concave 

nanocubes. (E) SERS enhancement factors (EF) on individual concave nanocubes at 785 nm 

excitation. The labels of i to vi in all the panels correspond to the concave nanocube samples 

shown in Figure 1D to 1I, respectively. 

 

To more quantitatively understand how the variation in edge-length and side-facet 

indentation affect the plasmonic properties of Au concave nanocubes, we used finite-

difference time-domain (FDTD) method to calculate the far-field extinction and near-

field enhancements of individual concave nanocubes. To more precisely match the 

experimental particle geometry, corner curvatures of 5 nm in radius were introduced to 

the nanocubes and concave nanocubes. Each face of the concave nanocubes exhibited a 

sharp tetragonal indentation angle, θ. Figure 4.5A shows the calculated extinction 
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spectral evolution of a Au concave nanocube (edge-length of 112 nm) as the indentation 

angle changes from 180° for a nanocube gradually to 125° for a highly indented concave 

nanocube. The far-field extinction spectra were calculated with the incident plane-wave 

polarized along the edge, the face diagonal, and the body diagonal of the nanocube, 

respectively. For all three polarizations, the LSPRs progressively red-shifted and the 

spectral line-shapes became increasingly more complex with multi-peaked features 

gradually developed as the degree of indentation increased. This is in line with previous 

observations that Au concave nanocubes display significantly red-shifted LSPRs in 

comparison to Au nanocubes of the same sizes.
68

  As shown in Figure 4.5B, the concave 

nanocubes exhibited highest field enhancements in the vicinities of the tips and electric 

fields were significantly enhanced at the particle edges as well. Larger field 

enhancements were achieved on the surfaces of concave nanocubes with higher degrees 

of indentation. To assess the SERS enhancements from individual concave nanocubes 

based on the FDTD results, we calculated the integrated fourth power of the field 

enhancements, |E/E0|
4
, over the entire volume up to 1.5 nm above the cube faces. As 

shown in Figures 5C and 5D, the integrated field-enhancements increased with the 

increase in the degree of indentation for both the edge and face diagonal polarizations. 

In Figure 4.6A, we compare the calculated extinction spectra of Au concave 

nanocubes with fixed indentation angle of 140° and various edge-lengths. To take into 

account the ensemble effects of randomly orientated nanoparticles in colloidal 

suspensions, FDTD-calculated extinction spectra were averaged over three polarizations, 

that is, the edge, face diagonal, and body diagonal polarizations. The calculated 

extinction spectra were also averaged for three different indentations θ 140
o + 5o to  
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Figure 4.5. (A) Calculated extinction spectra of a Au concave nanocube (D = 112 nm) with 

varying indentation angles (θ) for three polarizations (edge, face diagonal, and body diagonal 

polarizations). (B) The cross-sectional views of the calculated near-field enhancements (|E/E0|
2
) 

of Au concave nanocubes with edge length of 112 nm and various indentation angles of 180°, 

160°, 140°, and 120° at 785 nm excitation. The geometry of a concave nanocube in three-

dimensional Cartesian coordinates and the cross-section of the concave nanocube in the yz plane 

are illustrated. The left column is edge polarization, and the right column is face diagonal 

polarization. The incident plane wave propagates along z axis and the body center of the concave 

nanocube is at x = y = z = 0. Two planes parallel to the yz plane at x= 0 and 56 nm are shown for 
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each polarization and indentation angle. (C-D) Fourth power of the field enhancements integrated 

over volume (|E/E0|
4
) of concave nanocube (D = 112 nm) with various indentation angles for (C) 

edge and (D) face diagonal polarizations. 

 

account for the inhomogeneous indentations of the experimentally fabricated samples. 

Both the LSPR wavelengths and the spectral line-shapes of the calculated extinction 

spectra were in very good agreement with the experimental results shown in Figure 4.4A. 

We also calculated the integrated |E/E0|
4
 on Au concave nanocubes with indentation angle 

of 140° and various edge-lengths at 785 nm excitation. As shown in Figures 4.6B and 

4.6C, better coupling between the LSPRs and excitation laser, in general, gave rise to 

stronger field enhancements; however, the largest integrated field enhancements were 

obtained on the 112 nm concave nanocube whose LSPR extinction peak was blue-shifted 

in comparison to the excitation laser wavelength. This trend was in excellent agreement 

with our size-dependent spSERS results shown in Figure 4.4. Since the FDTD 

calculations only considered individual particles, the off-set between the far-field 

extinction and near-field peak wavelengths should not be interpreted as the consequence 

of light extinction in colloidal samples as previously claimed by Murphy and 

coworkers.
55

 Our spSERS results on plasmonically tunable Au concave nanocubes, 

together with the FDTD results, provide strong evidence that the red-shift of the near-

field resonance wavelengths with respect to the far-field extinction peaks is an intrinsic 

characteristic of individual metallic nanostructures.  
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Figure 4.6. (A) Calculated extinction spectra of a concave nanocube with indentation angles of 

140° and varying edge lengths as labeled in the figure. The vertical dashed line shows the 

excitation laser wavelength (785 nm) for Raman measurements. (B) Fourth power of the field 

enhancements integrated over volume (|E/E0|
4
) of concave nanocubes with θ of 140° and D of 66, 

85, 97, 112, 130, and 145 nm. The upper panel is for edge polarization and the lower panel is for 

face diagonal polarization.  

 

4.2.3. Au Nanotrisoctahedra.  

A trisoctahedral nanoparticle comprises eight trigonal pyramids generated by “pulling 

out” the centers of the eight triangular {111} facets of a nanooctahedron. This interesting 

particle geometry could be visualized in the SEM images shown in Figures 4.7A and 

4.7B. Although some of the nanoparticles did not appear trisoctahedral at first glance due 

500 600 700 800 900 1000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 

 


e
x
t  

/ 


m
2

Wavelength / nm

  66 nm

  85 nm

  97 nm

 112 nm

 130 nm

 145 nm

0

200

400

600

800

1000

1200

1400

1600

concave
nanocube

145130112978566

Edge porlarization

 

 

|E
/E

0
|4

 /
 n

m
3

 nanocube

 

          

0

500

1000

1500

2000

2500

3000

3500

4000

|E
/E

0
|4

 /
 n

m
3

Face diagonal porlarization

 

 

D / nm

A

B



www.manaraa.com

 

107 

to different orientations, a careful survey of particle shapes over a large sample area in 

low-magnification SEM image showed that around 90 % of the nanoparticles had the 

trisoctahedral morphology, around 4 % of the particles exhibited slightly elongated 

bipyramidal morphology, and the rest ~ 6 % of the particles were multifaceted polyhedra 

with ill-defined facets and overall shapes. Figure 4.7C shows a TEM image of one 

individual Au nanotrisoctahedron projected from the [011] zone axis. At this orientation, 

4 out of the 24 facets of the nanooctahedron were projected edge-on and the Miller 

indices of the exposed facets of the nanooctahedron were determined to be {221} through 

an analysis of the three projection angles marked in Figure 4.7C.
58, 59, 62, 65

 The Au 

nanotrisoctahedra fabricated using this seed-mediated growth method have essentially the 

same facets as those obtained from previously reported one-step seedless approach.
62

 The 

seeded growth method allowed us to fine-tune the size of the nanotrisoctahedra by 

adjusting the amount of Au seeds added into the growth solutions. As shown in Figures 

4.7D-4.7J, the average sizes of the Au nanotrisoctahedra progressively increased as the 

amount of Au seeds decreased and could be tightly controlled in the range from ~ 50 nm 

to over 200 nm. Similar to the Au concave nanocubes, the as-fabricated nanotrisoctahedra 

could also be immobilized onto poly(4-vinylpyridine)-functionalized glass substrates as a 

sub-monolayer of isolated particles for the spSERS measurements. 
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Figure 4.7. (A) SEM image of Au nano-trisoctahedra with average size of 191 nm. (B) SEM 

image of one nano-trisoctahedron. (C) TEM image of one individual nano-trisoctahedron with the 

electron beam projected along the [011] direction. The measured angles between the various 

edges of the nano-trisoctahedron were marked. (D-I) TEM images of Au nano-trisoctahedra with 

various average sizes fabricated by adding (D) 0.5 mL, (E) 0.1 mL, (F) 0.05 mL, (G) 0.025 mL, 

(H) 0.015 mL, and (I) 0.01 mL of Au seed solution. (J) Histograms showing the size distributions 

of Au nano-trisoctahedra shown in panels D-I.  

 

Figure 4.8A shows the extinction spectra of colloidal Au nanotrisoctahedra with 

various average sizes at particle concentration of ~ 1.0 X 10
9
 particle mL

-1
. As the particle 

size increased, the dipole LSPRs progressively red-shifted and became increasingly 

broadened. For nanotrisoctahedra within the sub-100 nm size regime, only one dipole 

LSPR band was observed in the extinction spectra. A narrower quadrupole LSPR band 
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emerged at shorter wavelength to the dipole LSPR band and became increasingly 

pronounced as the size of the nanotrisoctahedra further increased to beyond 100 nm due 

to the phase retardation effects.
35, 71, 72

  While the quadrupole LSPR was less sensitively 

dependent on the particle size, the broad dipole LSPR band could be systematically 

shifted with respect to the excitation laser by changing the particle sizes. Figure 4.8B 

shows the representative SERS spectra of 4-ATP SAMs formed on individual Au 

nanotrisoctahedra of various sizes. Similar to the results obtained on Au concave 

nanocubes, maximum SERS signals were obtained on the sample whose far-field 

plasmon band position was blue-shifted by ~ 70 nm in wavelength with respect to the 

excitation laser, further verifying that the red-shift of optimal excitation wavelength with 

respect to LSPR extinction peak is a universal phenomenon for metallic nanoparticles of 

different geometries. We repeated the spSERS measurements on 100 individual 

nanotrisoctahedra for each sample and the histograms of intensities of the 1078 cm
-1

 and 

1590 cm
-1

 modes are shown in Figure 4.8C. The nanotrisoctahedra exhibited average 

SERS EFs of ~10
5
 when their LSPRs were optimized under 785 nm excitation and the 

off-resonance enhancements were generally below 10
4
. Although the Au 

nanotrisoctahedra showed SERS enhancements one order of magnitude weaker than 

those achieved on Au concave nanocubes, they were significantly more efficient as 

substrates for spSERS than quasi-spherical nanoparticles of the same sizes
65

 primarily 

due to their tipped surface features. The surface tips of the nanotrisoctahedra were less 

sharp than those of the concave nanocubes, which may be one of the main reasons why 

Au concave nanocubes showed higher SERS enhancements than the nanotrisoctahedra. 
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Figure 4.8. (A) Experimental extinction spectra of colloidal Au nano-trisoctahedra of various 

sizes at particle concentration of ~ 1.0 X 10
9
 particles mL

-1
. The vertical dashed line shows the 

excitation laser wavelength (785 nm) for Raman measurements. (B) Representative SERS spectra 

of 4-ATP adsorbed on individual nano-trisoctahedra of various sizes. Histograms of the Raman 

intensity of (C) 1078 cm
-1

 mode and (D) 1590 cm
-1

 mode obtained from individual nano-

trisoctahedra. (E) SERS enhancement factors (EF) on individual nano-trisoctahedra at 785 nm 

excitation. The labels of i to vi in all the panels correspond to the nano-trisoctahedron samples 

shown in Figure 5D to 1I, respectively. 

 

We also used FDTD to calculate the size-dependent far-field extinction spectra and 

near-field enhancements of individual Au nanotrisoctahedra. The extinction spectra were 

calculated and averaged over two polarizations, X- and Y-polarizations, as illustrate in 

the inset of Figure 4.9A. Integrated near-field enhancements were obtained by integrating 

the electric field intensities in a sphere of radius D/2+1.5 nm, where D is the particle size 

of the nanotrisoctahedra.  As shown in Figure 4.9A, the calculated extinction spectra of 

the nanotrisoctahedra were in excellent agreement with the experimental results shown in 

A

B

C

D

500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

E
x
ti

n
c
ti

o
n

 /
 a

rb
. 
u

.
Wavelength / nm

   i

   ii

  iii

  iv

   v

  vi

1000 1200 1400 1600 1800

vi

v

iv

iii

ii

i

 500 counts 

 

 
R

a
m

a
n

 i
n

te
n

s
it

y

Raman shift / cm
-1

i ii iii iv v vi

10
4

10
5

 

 

 E
F

1078 cm
-1

1590 cm
-1

0

30

60

 

 

 

0

10

 

 

 

0

10

 

 

 

200 300 400
0

30

60

0

30

60

 

 

 

0

10

20

 

 

0

10

20

 

 

 

 

200 300
0

30

60

i

ii

iii

iv

vi

v

1590 cm
-1
 mode

 

 

0

20

40

 

 

 

0

50

100

 

 

 

 

 

 

I / counts

0

20

40

vi

v

iv

iii

ii

i

1078 cm
-1
 mode

 

 

 

N
u

m
b

e
r 

o
f 

p
a
rt

ic
le

s

0

50

100

 

 



www.manaraa.com

 

111 

Figure 4.8A. The calculated results on the near-field enhancements (Figures 4.9B-4.9C) 

clearly showed that the largest integrated field-enhancements were achieved on the 170 

nm nanotrisoctahedron whose dipole LSPR was on the blue side of the excitation laser 

though the dipole LSPR band of the 191 nm nanotrisoctahedron better matched the laser 

wavelength. We have further studied the effects of facet convexity on the far-field and 

near-field properties of a nanooctahedron (D = 170 nm). The convex nanotrisoctahedron 

exhibited red-shifted and broadened LSPR line-shapes in comparison to the 

nanooctahedron. The integrated near-field enhancements on the nanotrisoctahedron were 

several times higher than on the nanooctahedron at 785 nm excitation, indicating that 

introducing convexity to the nanooctahedron surfaces would give rise to improved SERS 

enhancements.  

 

 

Figure 4.9. (A) Calculated extinction spectra of Au nano-trisoctahedra of various particle sizes as 

labeled in the figure. The vertical dashed line shows the excitation laser wavelength (785 nm) for 

Raman measurements. (B) The cross-sectional views of the calculated near-field enhancements 

(|E/E0|
2
) of TOH Au nanoparticles with various sizes at 785 nm excitation. The upper panel is for 

X-polarization and the lower panel is for Y-polarization. Fourth power of the field enhancements 

integrated over volume (|E/E0|
4
) of Au nano-trisoctahedra with various sizes for (C) X-

polarization and (D) Y-polarization. 
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4.2.4. Au Nanostars.  

Au nanostars are multibranched nanoparticles with geometrically tunable LSPRs and 

strong electromagnetic field enhancements exploitable for SERS.
42-45

 Au nanostars with 

different sizes, tip sharpness, and number of tips have been chemically synthesized 

through seedless reduction of Au(III) chlorate with 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)
73, 74

 or seed-mediated growth in the presence of 

surface stabilizers, such as poly(vinylpyrrolidone) (PVP) and cetyltrimethylammonium 

bromide (CTAB).
42-45, 75, 76

 Our protocol of size-controlled synthesis of Au nanostars was 

essentially the same as that for the concave nanocubes except that multi-twinned Au 

seeds were used instead of single-crystalline seeds. As shown in Figure 4.10A, the as-

fabricated Au nanostars were highly monodisperse in terms of overall particle sizes and 

the multibranched morphology while the tip sharpness and the relative orientations of the 

branches on each nanostar varied form particle to particle. Our method allowed for the 

fabrication of Au nanostars with nearly 100 % yield as revealed by SEM images taken 

over large sample areas. The number of branches on each nanostar varied in the range 

from 6 to 10, which was determined by the number of facets exposed on the multi-

twinned Au seeds. In contrast to the single-crystalline Au concave nanocubes and 

nanotrisoctahedra, the Au nanostars had multi-twinned crystalline structures, as revealed 

by TEM image and SAED pattern shown in Figures 4.10B and 4.10C, respectively. The 

overall size of the Au nanostars could be controlled by adjusting the amount of multi-

twinned Au seeds added into the growth solutions (Figures 4.10D-4.10I). Both the 

average tip sharpness and average number of branches on each nanostar remained 

unchanged for the nanostars with different overall sizes. 
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Figure 4.10. (A) SEM image of Au nanostars fabricated by adding 0.025 mL of Au seed solution. 

The inset highlights one individual Au nanostar. (B) TEM image of one Au nanostar. (C) SAED 

pattern obtained from the particle shown in panel B. (D-I) TEM images of Au nanostars with 

different average sizes fabricated by adding (D) 0.5 mL, (E) 0.1 mL, (F) 0.05 mL, (G) 0.025 mL, 

(H) 0.015 mL, and (I) 0.01 mL of Au seed solution.  

 

The control over the size of Au nanostars allowed us to fine-tune the LSPRs over a 

broad spectral region across the visible and near-infrared (Figure 4.11A). As the 

nanostars became larger in size, their LSPR band progressively red-shifted and became 

more intense due to the increase in the particles’ e tinction cross-sections. The plasmonic 

tunability of nanostars results from the hybridization of plasmons focalized at the core 

and the tips of the nanoparticles.
77

 The red-shift in LSPRs can be interpreted as the results 

of increase in the aspect ratios of the branches. Similar to the Au concave nanocubes and 

nanotrisoctahedra, spSERS measurements were performed on sub-monolayers of isolated 

nanostars immobilized on polyvinylpyridine-functionalized glass substrates. Red-shift of 
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optimal excitation wavelength with respect to LSPR extinction peak was also observed 

on the Au nanostars. As shown in Figures 4.11B and 4.11C, the nanostar sample with far-

field extinction peak at ~ 740 nm exhibited the largest SERS enhancements. The surface-

averaged Raman EFs on individual nanostars were on the order of 10
6
 for off-resonance 

excitations and well exceeded 10
7
 when the LSPR was optimized with respect to the 

excitation laser.  The tips of nanostars were sharper than those of the concave nanocubes, 

giving rise to stronger field enhancements on each tip of the nanostars. In addition, the 

cores of the nanostars also displayed strong plasmonic antenna effects, dramatically 

increasing the excitation cross section and the electromagnetic field enhancements of the 

tip plasmons.
77

 Therefore, the SERS enhancements observed on individual nanostars 

were approximately one order of magnitude higher than those on individual concave 

nanocubes. 
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Figure 4.11. (A) Experimental extinction spectra of colloidal Au nanostars of various sizes at 

particle concentration of ~ 1.0 X 10
9
 particles mL

-1
. The vertical dashed line shows the excitation 

laser wavelength (785 nm) for Raman measurements. (B) Representative SERS spectra of 4-ATP 

adsorbed on individual Au nanostars of various sizes. Histograms of the Raman intensity of (C) 

1078 cm
-1

 mode and (D) 1590 cm
-1

 mode obtained from individual Au nanostars. (E) SERS 

enhancement factors (EF) on individual nano-stars at 785 nm excitation. The labels of i to vi in all 

the panels correspond to the Au nanostars samples shown in Figure 8D to 1I, respectively. 

 

To quantitatively understand the geometry dependence of LSPRs and SERS 

performance of Au nanostars, we performed FDTD calculations on Au nanostars with 

various numbers and sizes of tipped branches. The nanostar geometries used for FDTD 

calculations were taken with conical branches with a tip radius of 5 nm and a tip angle of 

30º. Extinction spectra were calculated and averaged for 6, 8, and 10 branches and over 

two different orthogonal polarizations (X- and Y-polarizations). Figure 4.12A shows the 

calculated extinction spectra of Au nanostars with various sizes, which are in very good 

agreement with the experimental results shown in Figure 4.11A. It was found the length 

of the branches had a major effect on the LSPR frequencies of the nanostars with longer 

branches resulting in more red-shifted LSPRs. The LSPR wavelengths of nanostars were 

also dependent on the thickness of the tipped branches. It is found that decrease in the 

thickness of the branches led to red-shift of the LSPRs.  The dependence of nanostar 

LSPRs on the length and thickness of the branches can be interpreted in the context of the 

well-understood longitudinal nanorod plasmon whose resonance wavelength red-shifts as 

the particle aspect ratio increases.
78, 79

 Interesting, the number of branches per nanostar 

had minimal effects on the LSPRs. Increasing the number of branches from 6 to 10 only 

resulted in slight broadening of the LSPR band while the LSPR peak positions were 

essentially unchanged. Figures 4.12B-4.12D show the calculated near-field distributions 

and integrated field enhancements of Au nanostars of various sizes at 785 nm excitation. 
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Integrated near-field enhancements were obtained by integrating the electric field in a 

sphere of radius D/2+1.5 nm, where D is the particle size of nanostar (twice of the length 

of each branch). Once again, largest integrated field-enhancement was obtained on the 

nanostar with LSPR band blue-shifted from excitation laser wavelength (Figures 4.12C 

and 4.12D), which matched the experimental results on spSERS shown in Figure 11D. 

The calculated integrated field-enhancements on Au nanostars were about one order of 

magnitude higher than those on Au concave nanocubes, also in excellent agreement with 

the experimental observations. 

 

Figure 4.12. (A) Calculated extinction spectra of individual Au nanostars with varying tip-to-tip 

distance, D, as labeled in the figure. The right panel shows the geometries of Au nanostar with 6, 

8, and 10 arms. The calculated extinction spectra were averaged over different arm numbers and 

various polarizations. The vertical dashed line shows the excitation laser wavelength (785 nm) for 

Raman measurements. (B) The cross-sectional views of the calculated near-field enhancements 

(|E/E0|
2
) of Au nanostars with various sizes at 785 nm excitation. Fourth power of the field 

enhancements integrated over volume (|E/E0|
4
) of Au nanostars with various sizes for (C) X-

polarization, and (D) Y-polarization. 
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4.4 Conclusions 

In summary, we have demonstrated that Au concave nanocubes, nanotrisoctahedra, and 

nanostars with fine-controlled particle sizes and narrow size distributions can be 

fabricated using a robust solution phase, seed-mediated growth method through 

deliberate control over the nanoparticle growth kinetics, surface passivation by Ag
+
, or 

the crystalline structures (single-crystalline vs. multi-twinned) of the Au seeds. The 

capability to precisely control the particle size in each geometry allows us to fine-tune the 

particle LSPRs with respect to the excitation laser wavelength and quantitatively evaluate 

the performance of individual nanoparticles as SERS substrates. Our spSERS results, 

further corroborated by FDTD calculations, provide strong evidence that the red-shift of 

the near-field enhancement peak wavelengths from the far-field LSPR extinction peaks is 

a universal intrinsic feature of individual metallic nanoparticles in different geometries. 

Au nanostars, concave nanocubes, and nanotrisoctahedra exhibit SERS enhancements on 

the orders of 10
7
, 10

6
, and 10

5
, respectively, on individual particles at 785 nm excitation 

when their LSPRs are tuned to the optimal spectral regions with respect to the excitation 

laser. Our experimental and FDTD results show that individual Au nanoparticles with 

nanoengineered surface tips may provide plasmonic field enhancements that are 

sufficiently high for spSERS without involving the strongly coupling plasmons confined 

in nanoscale interparticle or intraparticle junctions. The knowledge gained through this 

work provides important information that may guide the design and fabrication of 

metallic nanoparticles with increasing geometric complexity and further optimized 

plasmonic properties for SERS-based biosensing and bioimaging applications. 
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CHAPTER 5 

Facet-Dependent Catalytic Activities of Au Nanoparticles Enclosed by 

High-Index Facets 
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5.1 Introduction 

Intriguing nanoscale effects are broadly involved in heterogeneous catalysis, which can 

probably be best manifested by the size-dependent catalytic activities observed on Au 

nanoparticles (NPs).
1-6

 In striking contrast to their mesoscopic and bulk counterparts that 

are chemically inert, sub-5 nm Au NPs supported on high-surface-area oxide materials 

exhibit exceptionally high catalytic activities toward a series of oxidation and 

hydrogenation reactions under mild conditions.
1-10

 It is ubiquitously believed that the 

undercoordinated surface atoms located at the particle corners and edges, whose 

abundance increases significantly as the particle size shrinks down to the sub-5 nm size 

regime, provide a key contribution to the remarkable catalytic activities of small Au 

NPs.
6,11-13

 Interestingly, free-standing dealloyed nanoporous Au membranes also possess 

highly curved local surface structures with high fraction of undercoordinated surface 

atoms and thus exhibit similar catalytic activities as the oxide-supported sub-5 nm Au 

NPs even though their nanopores and ligaments are far beyond 5 nm in size.
14-17

 Building 

detailed, quantitative correlation between the surface structures and the intrinsic catalytic 

activities of Au, however, has been extremely challenging due to the structural and 

compositional complexity of these nanocatalyst systems. Both the oxide supports in 

contact with the Au NPs
18,19 

and the residual Ag present in the dealloyed Au nanoporous 

membranes
17,20 

have been found to have strong synergistic effects on the overall catalytic 

competence of the materials. In addition, the lack of precise control over the atomic-level 

surface structures of these Au nanocatalysts remains a substantial obstacle to the 

elucidation of detailed structure-property relationship that underpins the Au-based 

heterogeneous catalysis.  
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    In this chapter, we endeavor to gain quantitative insights into the intrinsic facet-

dependent catalytic activities of Au NPs using the room temperature catalytic 

hydrogenation of 4-nitrothiophenol (4-NTP) as a model reaction. We are particularly 

interested in the catalytic activities of high-index facets of Au because high-index facets 

are open surface structures with high densities of coordinatively unsaturated atoms at the 

surface steps and kinks and thereby exhibit dramatically enhanced catalytic activities 

toward a variety of chemical and electrochemical reactions in comparison to the close-

packed low-index facets.
21-23

 In this work, Au elongated tetrahexahedral (ETHH), 

concave cubic (CC), and trisoctahedral (TOH) NPs are selected as three representative 

model nanostructures each of which is exclusively enclosed by one specific type of high-

index facets. The Au ETHH, CC, and TOH NPs are all in the subwavelength size regime 

with well-defined facets significantly larger than 5 nm in size, ensuring that the catalytic 

activities are essentially determined by the characteristic distribution of undercoordinated 

surface atoms on each type of facets rather than those at the particle corners and edges. 

Distinct from the sub-5 nm Au NPs whose plasmon resonances are vanishingly weak, 

subwavelength Au ETHH, CC, and TOH NPs exhibit appealing plasmonic properties that 

enable the use of surface-enhanced Raman scattering (SERS) as a unique noninvasive 

ultrasensitive spectroscopic tool to precisely monitor, in real time, the molecular 

transformations occurring at the molecule catalyst interfaces.
24-28

 

5.2 Experimental Section 

Chemicals and Materials. All reagents were used as received without further 

purification. Ultrapure water (18.2 MΩ resistivity, Barnstead  asyPure II 7138) was used 

for all experiments. Silicon wafers were obtained from University Wafers. 
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    Synthesis of Au Elongated Tetrahexahedral (ETHH) Nanoparticles. Au ETHH 

nanoparticles were prepared following a recently reported protocol
31

 with some minor 

modifications. Colloidal Au seeds were prepared by the reducing HAuCl4 with NaBH4 in 

the presence of CTAB. In a typical procedure, 0.60 mL of ice-cold, freshly prepared 

NaBH4 (10 mM) were quickly injected into a solution composed of CTAB (9.75 mL, 0.10 

M) and HAuCl4 (0.25 mL, 10 mM) under magnetic stir (1000 rpm). The seed solution 

was stirred for 1 min and then left undisturbed for 2 h. The seed solution was diluted by 

50-fold with CTAB (0.10 M) and the diluted seed solution was used for the subsequent 

seed-mediated growth. The growth solution was prepared by sequentially adding HAuCl4 

(2.0 mL, 10 mM), AgNO3 (0.40 mL, 10 mM), HCl (0.80 mL, 1.0 M), and AA (0.32 mL, 

0.10 M) into a CTAB (40.00 mL, 0.10 M) solution. After gently mixing the growth 

solution for 30 s, the growth of Au ETHH nanoparticles was initiated by adding 0.1 mL 

of the diluted Au seed solution. The reaction solution was gently mixed for 30 s 

immediately after the addition of Au seeds and then left undisturbed at 30 
o
C for 

overnight. The obtained Au ETHH nanoparticles were washed with water twice through 

centrifugation-redispersion cycles, and finally redispersed in 5.0 mL of water.  

    Synthesis of Au Concave Cubic (CC) Nanoparticles. Au CC nanoparticles were 

prepared following a previously reported seed-mediated growth protocol
33

 with minor 

modifications. Colloidal Au seeds were first prepared by the reducing HAuCl4 with 

NaBH4 in the presence of CTAC. In a typical procedure, 0.30 mL of ice-cold, freshly 

prepared NaBH4 (10 mM) were quickly injected into a solution composed of CTAC 

(10.00 mL, 0.10 M) and HAuCl4 (0.25 mL, 10 mM) under magnetic stir (1000 rpm). The 

seed solution was stirred for 1 min and then left undisturbed for 2 h. The seed solution 
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was diluted by 1000-fold with CTAC (0.10 M) and the diluted seed solution was used for 

the subsequent seed-mediated growth. Then the growth solution was prepared by 

sequentially adding HAuCl4 (0.50 mL, 10 mM), AgNO3 (0.1 mL, 10 mM), HCl (0.20 mL, 

1.0 M), and AA (0.10 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) solution. After 

gently mixing the growth solution for 30 s, the growth of Au CC nanoparticles was 

initiated by adding  0.1 mL of the diluted Au seed solution. The reaction solution was 

gently mixed for 30 s immediately after the addition of Au seeds and then left 

undisturbed at room temperature for 4 h. The obtained Au CC nanoparticles were washed 

with water twice through centrifugation-redispersion cycles, and finally redispersed in 5.0 

mL of water. 

    Synthesis of Au Trisoctahedral (TOH) Nanoparticles. Au TOH nanoparticles were 

prepared following our previous protocol based on seed-mediated growth. Colloidal Au 

seeds were prepared by the reducing HAuCl4 with NaBH4 in the presence of CTAC. In a 

typical procedure, 0.30 mL of ice-cold, freshly prepared NaBH4 (10 mM) were quickly 

injected into a solution composed of CTAC (10.00 mL, 0.10 M) and HAuCl4 (0.25 mL, 

10 mM) under magnetic stir (1000 rpm). The seed solution was stirred for 1 min and then 

left undisturbed for 2 h. The seed solution was diluted by 1000-fold with CTAC (0.10 M) 

and the diluted seed solution was used for the subsequent seed-mediated growth. The 

growth solution was prepared by sequentially adding HAuCl4 (0.50 mL, 10 mM) and AA 

(1.0 mL, 0.10 M) into a CTAC (10.00 mL, 0.10 M) solution. After gently mixing the 

growth solution for 30 s, the growth of Au TOH nanoparticles was initiated by adding 

0.015 mL of the diluted Au seed solution. The reaction solution was gently mixed for 30 

s immediately after the addition of Au seeds and then left undisturbed at room 
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temperature for 4 h. The obtained Au TOH nanoparticles were washed with water twice 

through centrifugation redispersion cycles, and finally redispersed in 5.0 mL of water. 

    Synthesis of Au Quasi-Spherical (QS) Nanoparticles. Au QS nanoparticles were 

prepared following a previously published protocol with minor modification. Reducing 

chloroauric acid with formaldehyde at room temperature led to the formation of Au QS 

nanoparticles. In a typical procedure, 25.0 mg of K2CO3 was dissolved in 100 mL of 

water, followed by the addition of HAuCl4 (1.5 mL, 25.0 mM). The mixture solution was 

aged in the dark for 18 h. Then 0.167 mL of formaldehyde solution (37 wt %) was added 

into the mixture under magnetic stir (300 rpm). A brick-red colloidal suspension began to 

form after ∼15 min. The colloidal suspension was kept stirring for 30 min. The obtained 

Au QS nanoparticles were washed with water twice through centrifugation-redispersion 

cycles, and finally redispersed in 5.0 mL of water. 

    Characterizations. The morphologies and structures of the nanoparticles were 

characterized by transmission electron microscopy (TEM) and selected area electron 

diffraction (SAED) using a Hitachi H-8000 transmission electron microscope operated at 

an accelerating voltage of 200 kV. All samples for TEM measurements were dispersed in 

water and drop-dried on 200 mesh Formvar/carbon-coated Cu grids. The structures of the 

nanoparticles were also characterized by SEM using a Zeiss Ultraplus thermal field 

emission scanning electron microscope. The samples for SEM measurements were 

dispersed in water and drop-dried on silicon wafers. The optical extinction spectra of the 

nanoparticles were measured on aqueous colloidal suspensions at room temperature, 

using a Beckman Coulter Du 640 spectrophotometer.  
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    Time-Resolved SERS Measurements. The facet-dependent catalytic reaction kinetics 

was measured by time-resolved S RS. 100 μL colloidal suspensions of Au ETHH, CC, 

TOH, and QS nanoparticles with the same particle concentrations (~ 10
10

 particles mL
-1

) 

were each incubated with 500 μL ethanol solution of 1.0 mM 4-NTP overnight to form 

self-assembled monolayers of 4-NTP on the nanoparticle surfaces. Then the nanoparticles 

were centrifuged (3500 rpm, 3 min) and redispersed in 50 μL ultrapure  2O. The 

catalytic 4-NTP hydrogenation occurred at room temperature upon the addition of 50 μL 

of 200 mM NaBH4 in a 0.5 mL Eppendorf centrifuge tube. SERS spectra were obtained 

on a Bayspec Nomadic
TM 

confocal Raman microscopy built on an Olympus BX51 

reflected optical system with a 785 nm continuous wave excitation laser. The excitation 

laser was focused on the reaction mixture using a 10× objective [Numerical Aperture 

(NA) = 0.30, working distance (WD) = 11.0 mm, Olympus MPLFLN]. The laser power 

was measured to be 10.0 mW at the samples and the signal acquisition times were 1 s for 

ETHH and CC, 5 s for TOH, and 10 s for QS nanoparticles, respectively. Successive 

SERS spectra were collected in real time during the reactions until complete reduction of 

4-NTP into 4-ATP.     

5.3 Results and Discussions 

For Au NPs with face-centered cubic (fcc) crystalline structures, the surface energies of 

the low-index {111} and {100} facets are significantly lower than the {110} and other 

high-index facets.
22,29

 As a consequence, Au nanoparticles enclosed by the low energy 

facets, such as nanocubes ({100} facets), nano-octahedra ({111} facets), and multi-

twined quasi-spherical NPs ({111} and {100} facets), represent the most stable 
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nanoparticle geometries that are experimentally realizable. Although synthetically more 

challenging, polyhedral Au NPs enclosed by various types of high-index facets have been 

fabricated through facet-controlled nanocrystal growth processes.
30-34

 Here we adopted a 

versatile seed-mediated growth method to fabricate Au ETHH, CC, and TOH NPs in a 

shape-selective and size-controlled manner. As shown by the scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) images in Figure 5.1, 

the as-fabricated Au ETHH, CC, and TOH NPs all exhibited high monodispersity in 

terms of both particle sizes and morphologies. An ETHH NP is derived geometrically 

from a nanocuboid enclosed by 6 {100} facets upon introduction of surface convexity 

(Figures 5.1A-C). The Au ETHH NPs displayed different projected contours in the TEM 

images when they were orientated differently on the TEM grid and the orientation-

dependent projection contours fit the geometric model very well. The insets of Figure 

5.1C show the TEM image and selected area electron diffraction (SAED) pattern of one 

ETHH NP imaged with the electron beam projected along the [001] zone axis. Under this 

orientation, 8 out of the 24 facets became parallel to the projection direction, allowing us 

to measure the characteristic dihedral angles as labeled in the figure. This result indicates 

that each ETHH NP is enclosed by 24 high-index {730} facets.
31 

A CC NP is 

geometrically derived by introducing tetragonal indentation to each {100} facet of a 

nanocube (Figures 5.1D and 5.1E). Each CC NP appeared darker in the interior regions 

than in the edge regions and displayed orientation-dependent projection profiles and 

contrast in the TEM images. The insets of Figure 5.1E show the TEM image and SAED 

pattern of one CC NP imaged with the electron beam projected along the [001] zone axis. 

While the Au CC NP appeared to have a cubic morphological outline under this 
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projection, the degree of indentation could be characterized by measuring the indentation 

angles (the dihedral angle between indented facets) based on the different contrast in the 

TEM image. As marked in the figure, the indentation angles were measured to be 136 ± 

1°, indicating that each Au CC NP is enclosed by 24 high-index {520} facets. The as-

fabricated Au CC NPs exhibited a higher degree of indentation in comparison to the Au 

CC NPs with {720} facets (indentation angle of 148°) previously reported by Mirkin and 

co-workers.
33

 A TOH NP is obtained by creating a trigonal pyramid on each triangular 

{111} facet of a nanooctahedron (Figures 5.1F and 5.1G). The insets of Figure 5.1G 

show the TEM image and the SAED pattern of one Au TOH NP projected from the [011] 

zone axis. Under this orientation, 4 out of the 24 facets of the TOH NP were projected 

edge-on, and the exposed facets were determined to be {221}
32

 through analysis of the 

characteristic projection angles marked in the figure. The TEM projection outlines of 

individual TOH NPs with various orientations are clearly observed, which is a great 

agreement with the geometric model. The single-crystalline Au ETHH, CC, and TOH 

NPs provided unique NP systems for us to quantitatively compare the catalytic activities 

of three types of high-index facets, {730}, {520}, and {221} facets. We also fabricated 

multi-twinned Au quasi-spherical (QS) NPs enclosed by {100} and {111} facets (Figures 

5.1H and 5.1I) to further compare the catalytic activities of the high-index facets with 

those of the low-index facets.  
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Figure 5.1. Structures of Au ETHH, CC, TOH, and QS NPs. (A, B) SEM images of Au ETHH 

NPs. The inset of panel A shows the geometric model of an ETHH NP. (C) TEM images of Au 

ETHH NPs (insets: high-magnification TEM image and SAED pattern of an individual Au ETHH 

NP viewed along the [001] projection). (D) SEM image of Au CC NPs (inset: geometric model of 

a CC NP). (E) TEM image of Au CC NPs (insets: high-magnification TEM image and SAED 

pattern of an individual Au CC NP viewed along the [001] projection). (F) SEM image of Au 

TOH NPs (upright inset: high-magnification SEM image of an individual Au TOH NP; bottom 

left inset: geometric model of a TOH NP). (G) TEM image of Au TOH NPs (insets: high-

magnification TEM image and SAED pattern of an individual Au TOH NP viewed along the 

[011] projection). (H) SEM image of Au QS NPs (upright inset: high-magnification SEM image 

of an individual Au QS NP; bottom left inset: geometry model of a QS NP). (I) TEM image of Au 

QS NPs. (J) Optical extinction spectra of colloidal suspensions of Au ETHH, CC, TOH, and QS 

NPs. The vertical dashed line indicates the wavelength (785 nm) of the excitation laser for SERS 

measurements. 

 



www.manaraa.com

 

135 

    Using the seed-mediated growth method, the size of the NPs can be precisely 

controlled for each geometry by adjusting the amount of Au seeds added into the reaction 

mixtures. The Au ETHH, CC, and TOH NPs all exhibited size-dependent plasmonic 

tunability, allowing us to fine-tune, through deliberate size control, their plasmon 

resonances with respect to the excitation laser wavelength to achieve optimal SERS 

enhancements on individual NPs. While on-resonance excitations typically generate 

higher Raman enhancements than the off-resonance excitations,
35

 the far-field plasmon 

resonance bands do not overlap exactly with the wavelengths at which the largest near-

field enhancements are achieved. It has been demonstrated both theoretically and 

experimentally on various metallic nanostructures that the maximum near-field 

enhancements occurred at longer wavelengths relative to the far-field extinction peaks.
36-

40 
With this key design principle in mind, the characteristic plasmon resonances of the Au 

ETHH, CC, TOH, and QS NPs were all tuned to be within the same spectral region that 

was blue-shifted by 35 to 70 nm in wavelength with respect to the excitation laser (785 

nm). As shown in Figure 5.1J, subwavelength Au ETHH, CC, TOH, and QS NPs 

exhibited their own geometry-dependent plasmonic characteristics. Due to the rod-like 

anisotropic structures, colloidal Au ETHH NPs exhibited a longitudinal and a transverse 

plasmon bands at ∼720 nm and ∼570 nm, respectively. Au CC NPs displayed a well-

define dipole plasmon resonance band at ∼750 nm and a quadrupole shoulder at ∼590 

nm. Due to the phase retardation effects,
41

 the dipole plasmon bands of TOH and QS NPs 

were both significantly broadened, and sharper quadrupole bands emerged at shorter 

wavelengths relative to the dipole bands. 

 



www.manaraa.com

 

136 

 
 

Figure 5.2. Monitoring surface-catalyzed reactions on Au CC NPs by time-resolved SERS. (A) 

Representative SERS spectra collected from 4-NTP adsorbed on the surfaces of Au CC NPs at 

different reaction times of 0, 16, 24, 32, 38, 44, 50, and 60 s after introducing NaBH4. The spectra 

were offset for clarity. (B) Schematic illustration of the reduction of surface-adsorbed 4-NTP 

(reactant, R) to DMAB (intermediate, I) and finally to 4-ATP (product, P). 

 

   We used SERS to monitor, in real time, the catalytic hydrogenation of 4-NTP adsorbed 

on the surfaces of the Au ETHH, CC, TOH, and QS NPs. Colloidal suspensions of the 

NPs were first incubated with ethanolic solution of 4-NTP overnight to undergo a ligand 

exchange process through which saturated self-assembled monolayers (SAMs) of 4-NTP 

were immobilized on the NP surfaces. The 4-NTP-coated NPs were redispersed as 

colloidal suspensions in water, and the catalytic reactions were initiated upon 

introduction of NaBH4 at room temperature (298 K). Figure 5.2A shows the evolution of 
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SERS spectra upon exposure of 4-NTP-coated Au CC NPs to 100 mM NaBH4. 4-NTP 

showed three characteristic SERS bands at 1076, 1338, and 1571 cm
-1

, respectively.
26-28

 

Upon exposure to NaBH4, there was an induction time (t0) of ∼20 s during which the 

SERS features of 4-NTP remained unchanged. This induction time is most likely due to 

the formation of active surface hydrogen species upon adsorption of borohydride ions 

onto the Au surfaces.
42

 Only when the concentration of the surface hydrogen species was 

built up to a certain threshold value was the hydrogenation of 4-NTP initiated. As the 

reaction proceeded, the peak intensities at both 1338 and 1571 cm
-1

 decreased 

progressively with the concomitant emergence of a new Raman peak at 1590 cm
-1

, which 

was assigned to 4-aminothiophenol (4-ATP).
28

 The time-resolved SERS measurements 

also allowed us to identify 4,4′-dimercaptoazobenzene (DMAB), whose characteristic 

Raman modes are at 1140, 1388, and 1438 cm
-1

,
43-45

 as an intermediate species formed 

during the reaction. Based on the spectroscopic evolution observed in the SERS 

measurements, a possible reaction mechanism is proposed, which is schematically 

illustrated in Figure 5.2B. The Au NP-catalyzed hydrogenation of 4-NTP by NaBH4 

involves three major steps: (1) generation of surface-hydrogen species upon adsorption of 

borohydride ions to Au surfaces; (2) reduction of surface-adsorbed 4-NTP by the surface-

hydrogen species to form the intermediate, DMAB; and (3) further hydrogenation of 

DMAB into the final product, 4-ATP. Although similar spectral evolutions were 

observed on Au ETHH, TOH, and QS NPs, the reaction rates varied significantly among 

the Au NPs of different geometries. 

    The time-resolved SERS results clearly showed that the catalytic reaction rates 

decreased in the order of ETHH > CC ≫ TOH > QS NPs. The facet-dependent catalytic 
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activities observed here were intimately tied to the distribution of coordinatively 

unsaturated surface atoms on various facets. The atomic-level structures of {730} (ETHH 

NPs), {520} (CC NPs), {221} (TOH NPs), and {111} + {100} (QS NPs) facets are 

schematically illustrated in Figures 5.3A-5.3D, respectively, based on which the fractions 

of surface atoms with different coordination numbers can be calculated. We used the 

Raman modes at 1338 and 1590 cm
-1

 to quantify the fraction of 4-NTP and 4-ATP 

molecules, respectively, at various reaction times. Under our experimental conditions, 

NaBH4 (100 mM) was in excess, and its concentration maintained constant throughout 

the entire reaction processes. Therefore, this catalytic reaction obeyed pseudo-first-order 

kinetics, and the induction times and rate constants were obtained by performing least-

squares curve fitting to the reactant and product trajectories shown in Figures 3E-3H. The 

rate equations for this two-step consecutive reaction are listed as follows: 
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where θR, θP, and θI are the fractions of 4-NTP, 4-ATP, and the intermediate (DMAB), 

respectively. k1 and k2 are the rate constants for the first and second hydrogenation steps, 

respectively, and t0 is the induction time. During the catalytic reactions, successive SERS 

spectra were collected in real time until complete hydrogenation of 4-NTP into 4-ATP. 

The time resolutions of the kinetic measurements were limited by the integration times 

for SERS spectral collection, which were 1 s for ETHH and CC, 5 s for TOH, and 10 s 

for QS NPs, respectively, under the current experimental conditions. Although the 
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excitation of plasmon resonances may enhance the rates of some catalytic surface 

reactions,
46,47

 the catalytic 4-NTP hydrogenation was found to be neither driven by 

plasmons nor affected by the coupling of plasmon excitations to the reaction coordinates. 

The reaction rates were observed to remain essentially unchanged when various time 

intervals (the excitation laser was blocked by a laser beam shutter) were introduced 

between SERS spectral collections. 

    In Figures 5.3I and 5.3J, we compare the rate constants and induction times on various 

Au NPs. The increase in rate constants was accompanied by decrease in induction times. 

Interestingly, the k2 was significantly larger than k1 on all four nanostructures, and, as a 

consequence, the fraction of the intermediate remained low during the reactions (see the 

blue dash curves in Figures 5.3E-5.3H). However, the high detection sensitivity of SERS 

and the large Raman cross-section of DMAB
43-45 

allowed us to indentify DMAB as the 

intermediate and further resolve the complex kinetics of the two-step reaction. It is 

apparent that all the high-index facets were catalytically more active than the low-index 

{111} and {100} facets. The observed facet-dependent catalytic activities correlated well 

with the characteristic distributions of undercoordinated surface atoms on various facets 

as shown in Figure 5.3K. The {730} facets of ETHH NPs and {520} facets of CC NPs 

showed significantly higher catalytic activities than the {221} facets of TOH NPs 

because both the {730} and {520} facets have significant fraction of surface atoms with a 

coordination number of 6, while the lowest surface atomic coordination number on the 

{221} facets is 7. The {730} facets were observed to be more active than the {520} 

facets largely due to the higher fraction of surface atoms with coordination number of 6. 

In contrast, the low-index {100} and {111} facets only have surface atomic coordination 



www.manaraa.com

 

140 

numbers of 8 and 9, respectively, and thus showed much lower catalytic activities than 

the high-index facets. 

 

Figure 5.3. Facet-dependent catalytic activities of Au NPs. Schemes of the atomic level surface 

structures of (A) the {730} facet of Au ETHH NPs, (B) the {520} facet of Au CC NPs, (C) the 

{221} facet of Au TOH NPs, and (D) the {111} and {100} facets of Au QS NPs. (E-H) Fraction 

of reactant (θR), intermediate (θI), and product (θP) as a function of reaction time during the 

reactions catalyzed by Au (E) ETHH, (F) CC, (G) TOH, and (H) QS NPs. The error bars show 

the standard deviations obtained from five experimental runs. The results of the least-squares 

fitting are shown as solid curves for the reactants and products. The fitted results for the 

intermediate trajectories are shown as dash blue curves. Panels E-H share the same legends in 

Panel E. (I) The comparison of rate constants, k1 and k2, of the two-step surface reactions on Au 

ETHH, CC, TOH, and QS nanoparticles. (J) The comparison of induction time, t0, of the 

reactions on Au ETHH, CC, TOH, and QS NPs. (K) Fraction of the coordination numbers of the 

surface atoms for the {730} (ETHH), {520} (CC), {221} (TOH), and {111}/{100} (QS) facets. 

     

    Using this SERS-based approach to monitor the surface-catalyzed reactions has several 

unique advantages. Because both the reactant and product molecules were immobilized 

as SAMs on the nanocatalyst surfaces, it became possible to unravel the intrinsic surface 

reaction kinetics with minimal complication introduced by the surface-capping ligands as 
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well as the diffusion, adsorption, and desorption of reactants and products. In addition, 

the catalytic reaction kinetics probed by SERS of surface-immobilized SAMs was 

independent of the total nanocatalyst surface areas, i.e. the concentrations of the colloidal 

Au NPs, in the presence of excessive NaBH4, which was quantitatively demonstrated on 

porous Au NPs in a recent publication
48

 and was further verified on the Au ETHH, CC, 

and TOH NPs in this work. This allowed us to compare the catalytic activities of various 

Au facets without the necessity to normalize the particle surface areas for different 

geometries. Furthermore, the high sensitivity and unique fingerprinting capability of 

SERS enabled the identification of transient intermediates along the reaction pathways. In 

our SERS measurements, we used a confocal Raman microscope with the laser beam 

focused into a small volume of the colloidal NP suspensions, and the SERS signals were 

collected from an observation volume of ∼100 pL. Therefore, each freely diffusing NP 

was exposed to the excitation laser for a short time period (within the diffusion time), 

effectively eliminating the plasmon-driven photoconversion of 4-NTP to DMAB
43,45 

and 

photo-induced sample damage. The relatively low excitation power (10.0 mW CW laser) 

and limited exposure time of each diffusing NP to the confocal laser beam also 

effectively minimized photothermal effects and suppressed other possible plasmon- 

enhanced surface reactions, allowing one to precisely measure the intrinsic kinetics of the 

catalytic chemical transformations occurring at the NP-molecule interfaces. 

    Our results provide clear experimental evidence on the critical contribution of 

undercoordinated surface atoms to the catalytic activities of Au NPs. The quantitative 

insights on the intrinsic facet-dependent catalytic activities of Au NPs gained through this 
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work provide important information that guides the rational design and construction of 

nanoarchitectured Au surfaces for the optimization of heterogeneous catalysis. 

5.4 Conclusions 

In summary, we employed surface-enhanced Raman scattering as a noninvasive in situ 

spectroscopic tool to quantitatively study the intrinsic facet-dependent catalytic activities 

of colloidal subwavelength Au nanoparticles enclosed by various types of well-defined 

high-index facets using the catalytic hydrogenation of 4-nitrothiophenol as a model 

reaction. Our results provide compelling experimental evidence on the crucial roles of 

undercoordinated surface atoms in Au-based heterogeneous catalysis and shed light on 

the underlying relationship between the atomic-level surface structures and the intrinsic 

catalytic activities of Au nanocatalysts.  
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CHAPTER 6 

Faceted Gold Nanorods: Nanocuboids, Convex Nanocuboids, and Concave 

Nanocuboids 
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6.1 Introduction 

Development of detailed, quantitative understanding of the intriguing geometry-

dependent optical, electronic, and catalytic characteristics of metallic nanoparticles 

requires precise control over the particle shapes and facets.
1-4

 One of the most impactful 

breakthroughs in shape-controlled nanoparticle synthesis has been the seed-mediated 

anisotropic growth of single-crystalline Au nanorods (NRs) guided by a structure-

directing ion, Ag
+
, and halide-containing cationic surfactants, most commonly 

cetyltrimethylammonium bromide (CTAB).
5-11

 Au NRs have become a model system for 

understanding the shape evolution of highly anisotropic nanocrystals with 

thermodynamically unexpected shapes.
7,12,13

 The protocols for NR synthesis, however, 

have been initially developed and gradually optimized in a largely empirical fashion.
14

 

The detailed mechanisms regarding the symmetry-breaking of isotropic seeds at the 

embryonic stage of NR formation and the driving forces of the subsequent anisotropic 

shape evolution are still elusive and controversial.
15-18

 It still remains a significant 

challenge to pinpoint the effects of multiple interplaying thermodynamic, kinetic, and 

geometric factors that underpin the anisotropic growth of single-crystalline Au NRs.  

Our enthusiasm on Au NRs stems from the unique combination of their tunable 

plasmon resonances with exceptional catalytic activities. The state-of-the-art NR 

synthesis allows one to fine-tune the plasmon resonances of Au NRs over a broad 

spectral range spanning the entire visible and near-infrared regions through tight control 

over the NR aspect ratios.
7,12-14

 However, it remains significantly more challenging to 

fine-tailor, at the atomic level, the crystallographic facets exposed on NR surfaces,
19-26

 

which determine the site-specific catalytic properties of Au NRs. While Au NRs typically 
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exhibit a cylindrical morphology with two rounded, quasi-semispherical tips, they should 

be more accurately described as reconstructed anisotropic nanocrystals enclosed by 

various types of facets.
19-22,27,28

 The quantitative assignments of the crystallographic 

facets on Au NRs, nevertheless, are still under intense debate,
19-21,27

 and subtle 

modification of the NR synthesis protocols may drastically change the local curvatures 

and exposed facets on the NR surfaces. Recent high-resolution electron microscopic 

studies elucidate that each single-crystalline Au NR is essentially enclosed by coexisting 

high-index and low-index facets with comparable dimensions and thermodynamic 

stabilities.
29

 The structural complexity of the NR surfaces, however, remains a substantial 

obstacle to the quantitative assessment of the facet-dependent intrinsic catalytic activities 

of Au NRs.  

In this chapter, we demonstrate that controlled overgrowth of Au NRs guided by Cu
2+

 

and cationic surfactants leads to the formation of various anisotropic Au nanostructures 

each of which is enclosed exclusively by one specific type of low-index or high-index 

facet. This NR overgrowth approach allows us to precisely tailor the facets of anisotropic 

Au nanoparticles while still retaining the capability to fine-tune the particle aspect ratios, 

advancing the NR synthesis toward an unprecedented level of geometry control. As 

demonstrated in this work, creation of well-defined facets on plasmonically tunable Au 

NRs provides unique opportunities for us to gain quantitative insights into the facet-

dependent molecular transformations on Au nanocatalysts using surface-enhanced Raman 

scattering (SERS) as an ultrasensitive in situ spectroscopic tool.  
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6.2 Experimental Section 

Chemicals and Materials. Gold(III) chloride trihydrate (HAuCl4·3H2O, ACS grade) 

and potassium carbonate (anhydrous) were purchased from J.T. Baker. Sodium 

borohydride (NaBH4, 99 %), hydrochloric acid (HCl, 37 %), L-ascorbic acid (AA, 99.5 

%), ammonia borane (H6BN, AB, 97%), and 4-nitrophenol (C6H5NO3, 4-NP, 99%) were 

purchased from Sigma-Aldrich. Sodium oleate (NaOL, > 97 %) and (1-hexadecyl)- 

trimethylammonium bromide (CTAB, > 98.0%) were purchased from TCI America. (1-

hexadecyl)- trimethylammonium chloride (CTAC, 96 %), silver nitrate (AgNO3, 99.9995 

% metals basis), copper (II) nitrate hydrate (Cu(NO3)2·xH2O, 99.999 % metal basis), 

benzyldimethylhexadecylammonium chloride (BDAC, 95 %), and 4-nitrothiophenol 

(C6H5NO2S, 4-NTP, 80 %) were obtained from Alfa Aesar. Glycerol (C3H8O3, 99.5 %) 

and ethanol (200 proof) were purchased from Fisher Scientific. All reagents were used as 

received without further purification. Ultrapure water (18.2 MΩ resistivity, Barnstead 

EasyPure II 7138) was used for all experiments.  

Synthesis of Cylindrical Au Nanorods (NRs). Single-crystalline cylindrical Au 

nanorods were prepared following a previously published protocol
11

 with minor 

modifications. Colloidal Au seeds were prepared by the reducing HAuCl4 with NaBH4 in 

the presence of CTAB. First, 5.0 mL of 0.5 mM HAuCl4 was mixed with 5 mL of 0.2 M 

CTAB solution. Then, 1.0 mL of ice-cold, freshly prepared 6 mM NaBH4 was quickly 

injected into the mixture under magnetic stirring (1200 rpm). The seed solution was 

stirred for 2 min and then left undisturbed for 30 min before use. To prepare the Au 

nanorods growth solution, 7.0 g of CTAB and 1.234 g of NaOL were dissolved in 250 

mL of water at 60 °C. The solution was cooled to 30 °C and then 18 mL of 4 mM AgNO3 
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was added. The mixture was kept undisturbed at 30 °C for 15 min, followed by the 

addition of 250 mL of 1 mM HAuCl4. The solution became colorless after 90 min of 

stirring at 700 rpm and 1.5 mL HCl (37 wt % in water, 12.1 M) was then introduced into 

the mixture. After another 15 min of slow magnetic stir at 400 rpm, 1.25 mL of 64 mM 

ascorbic acid was added. Finally, 0.8 mL of seed solution was injected into the growth 

solution and the mixture solution was vigorously stirred for another 30 s and then left 

undisturbed at 30 °C for 12 h. The resulting Au nanorods were collected by 

centrifugation at 7000 rpm for 20 min followed by removal of the supernatant and finally 

redispersed in 30 mL of 20 mM CTAB. 

Synthesis of Au Nanocuboids (NCBs). Au NCBs were prepared via overgrowth of 

Au nanorods in the presence of Cu
2+

, HAuCl4, CTAC, and AA. In a typical procedure, 

200 

washed once with water. The growth solution was prepared by sequentially adding H2O 

(3.53 mL), HAuCl4 (0.15 mL, 10 mM), Cu(NO3)2 (20 L, 10 mM), and AA (1.0 mL, 

0.10 M) into a CTAC (5.20 mL, 0.10 M) solution. After gently mixing the growth 

solution for 30 s, the growth of Au NCBs was initiated by adding 100 L of the Au 

nanorods (in 0.1 M CTAC). The reaction solution was gently mixed for 30 s immediately 

after the addition of Au nanorods and then left undisturbed at 30 °C for 1 h. The obtained 

Au NCBs were washed with water twice through centrifugation/redispersion cycles, and 

finally redispersed in 200 L of 20 mM CTAC. The total volume of the growth solutions 

was always fixed at 10.0 mL.   
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Synthesis of Au Convex Nanocuboids (CVNCBs). Au CVNCBs were prepared via 

overgrowth of Au nanorods in the presence of Cu
2+

, HAuCl4, CTAC, BDAC, and AA. In 

a typical procedure, 200 L of Au nanorods were first redispersed in 100 L 0.10 M 

CTAC after being washed once with water. The growth solution was prepared by 

sequentially adding BDAC (2.65 mL, 0.10 M), H2O (3.38 mL), HAuCl4 (0.30 mL, 10 

mM), Cu(NO3)2 (20 L, 10 mM), and AA (1.0 mL, 0.10 M) into a CTAC (2.55 mL, 0.10 

M) solution. After gently mixing the growth solution for 30 s, the growth of Au CVNCBs 

was initiated by adding 100 L of the Au nanorods (in 0.1 M CTAC). The reaction 

solution was gently mixed for 30 s immediately after the addition of Au nanorods and 

then left undisturbed at 30 °C for 1 h. The obtained Au CVNCBs were washed with water 

twice through centrifugation/redispersion cycles, and finally redispersed in 200 L of 

binary surfactant solution containing 10 mM CTAC and 10 mM BDAC. The total volume 

of the growth solutions was always fixed at 10.0 mL. 

Synthesis of Au Concave Nanocuboids (CCNCBs). Au CCNCBs were prepared via 

controllable overgrowth of Au nanorods in the presence of Cu
2+

, HAuCl4, CTAC, CTAB, 

and AA. In a typical procedure, 200 L of Au nanorods were firstly redispersed in 100 

L 0.10 M CTAB after washed one time with water. The growth solution was prepared 

by sequentially adding CTAB (0.2 mL, 0.10 M), H2O (3.45 mL), HAuCl4 (0.20 mL, 10 

mM), Cu(NO3)2 (50 L, 1 mM), and AA (1.0 mL, 0.10 M) into a CTAC (5.00 mL, 0.10 

M) solution. After gently mixing the growth solution for 30 s, the growth of Au CCNCBs 

was initiated by adding 100 L of the Au nanorods (0.1 M CTAB). The reaction solution 

was gently mixed for 30 s immediately after the addition of Au nanorods and then left 

undisturbed at 30 °C for 1 h. The obtained Au CCNCB were washed with water twice 
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through centrifugation/redispersion cycles, and finally redispersed in 200 L of binary 

surfactant solution containing 1.6 mM CTAB and 20 mM CTAC. The total volume of the 

growth solutions was always fixed at 10.0 mL. 

Characterizations. The morphologies and structures of the nanoparticles were 

characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 

transmission electron microscope operated at an accelerating voltage of 200 kV. All 

samples for TEM measurements were dispersed in water and drop-dried on 300 mesh 

Formvar/carbon-coated Cu grids. The structure and composition of the nanoparticles 

were also characterized by SEM and EDS measurements using a Zeiss Ultraplus thermal 

field emission scanning electron microscope. The samples for SEM measurements were 

dispersed in water and drop-dried on silicon wafers. The optical extinction spectra of the 

nanoparticles were measured on aqueous colloidal suspensions at room temperature, 

using a Beckman Coulter Du 640 spectrophotometer. Raman spectra were obtained on a 

Bayspec Nomadic
TM

 Raman microscopy built on an Olympus BX51 microscope 

equipped with a 785 nm  W diode laser. ζ–potentials of Au NRs, NCBs, CVNCBs, and 

CCNCBs were measured using ZETASIZER nanoseries (Nano-ZS, Malvern). The 

samples for ζ–potential measurements were all freshly prepared, centrifuged, and 

redispersed in water. XPS measurements were carried out using a Krato AXIS Ultra DLD 

XPS system equipped with a monochromatic Al Kα source. The samples for XPS 

measurements were all freshly prepared, dried, and kept in vacuum before being loaded 

into the XPS chambers.  

Refractometric Sensitivity of Plasmon Resonances. Glycerol-water mixtures of 

varying volume ratios were used to alter the refractive index of the surrounding medium 
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of Au nanoparticles. The volume percentage of glycerol in the mixtures was varied from 

0% to 60% at a step of 10%. The as-prepared Au NRs, NCBs, CVNCBs, and CCNCBs 

were first washed with water, centrifuged, then redispersed in the glycerol-water 

mixtures. Extinction spectra were measured to track the shifts of plasmon resonance 

wavelengths. The plasmon shift was plotted as a function of the refractive index, and the 

refractometric sensitivities of the longitudinal and transverse plasmon resonances were 

determined through least squares curve fitting using a linear function. The refractive 

index of the glycerol-water mixtures were calculated using the Lorentz-Lorenz equation:  

 

 

Where n12 is the refractive index of the glycerol-water mixture, n1 and n2 are the 

refractive indices of the glycerol (n1 = 1.4746) and water (n2 = 1.3334) respectively, and 

φ1 and φ2 are the volume percentage of glycerol and water in the mixture respectively. 

The figure of merit (FOM) for plasmon sensing was calculated by dividing the 

refractometric sensitivity by the full width at half-maximum (FWHM) of the 

corresponding extinction peak. 

    UV-Vis Spectroscopic Measurements of Catalytic Reaction Kinetics. We used the 

hydrogenation of 4-nitrophenol (4-NP) by ammonia borane (AB) at room temperature as 

a model reaction to evaluate the catalytic activities of Au NRs, NCBs, CVNCBs, and 

CCNCBs. In a typical procedure, 0.1 mL of 1.0 mM 4-NP, 0.1 mL of 0.1 M AB (freshly 

prepared), and 0.1 mL of 10 mM K2CO3 were sequentially added to 1.0 mL of ultrapure 

water in a cuvette and mixed thoroughly. Then, 20 μL of Au NRs, N Bs,  VN Bs, or 
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  N Bs were injected into the system. After thoroughly mi ed for 5 s, UV−vis 

extinction spectra were collected in real time to monitor the catalytic reaction process. 

We compared the catalytic activities of Au NRs, NCBs, CVNCBs, and CCNCBs at the 

same particle concentration (9.0 × 10
10

 particle/mL). 

    Monitoring Reaction Kinetics by Time-Resolved SERS Measurements. To use 

SERS to monitor the catalytic reactions, we first pre-adsorbed SAMs of 4-NTP onto the 

surfaces of Au N Bs,  VN Bs, and   N Bs. In a typical procedure, 200 μL colloidal 

suspensions of Au NCBs, CVNCBs, or CCNCBs (~1.0 × 10
11

 particles mL
-1

) were 

incubated with 400 μL ethanol solution of 50.0 μM 4-NTP overnight to form saturated 

SAMs of 4-NTP on the nanoparticle surfaces. Then, the 4-NTP-coated NCBs, CVNCBs, 

and CCNCBs were centrifuged (3500 rpm, 3 min) and redispersed in 160 µL ultrapure 

water. The nanoparticle-catalyzed 4-NTP reduction occurred at room temperature upon 

the addition of 20 μL of Au N Bs,  VN Bs, or   N Bs, 50 μL of ultrapure water, 10 

μL of 10 mM K2CO3 and 20 μL of 10 mM AB in a 0.5 mL  ppendorf centrifuge tube. 

The kinetics of the catalyzed reactions were measured in real time using time-resolved 

SERS. SERS spectra were obtained on a Bayspec NomadicTM confocal Raman 

microscopy built on an Olympus BX51 reflected optical system with a 785 nm 

continuous wave excitation laser. The excitation laser was focused on the reaction 

mixture using a 10× objective [Numerical Aperture (NA) = 0.30, working distance (WD) 

= 11.0 mm, Olympus MPLFLN].  The laser power was measured to be 10.0 mW at the 

samples and the signal acquisition time was 2 s for all samples. Successive SERS spectra 

were collected during the reaction until completion of the reduction of 4-NTP into 4-

ATP. We also assessed the catalytic activities of Au NCBs, CVNCBs, and CCNCBs at 



www.manaraa.com

 

156 

various AB concentrations (0.1, 0.2, 0.4, 1, 2, 4, 10, and 20 mM). The total volume of the 

reaction mi tures was always fi ed at 100 μL. 

6.3 Results and Discussions 

Our success in facet control of anisotropic nanostructures essentially relies on selective 

modification of the surface energies of various Au facets by Cu
2+

 ions and surface 

capping surfactants, which has profound impacts on the facet evolution during NR 

overgrowth. As schematically illustrated in Figure 6.1A, we used the conventional 

cylindrical Au NRs with rounded ends as the starting materials, which evolved into Au 

nanocuboids (NCBs) upon overgrowth in the presence of Cu
2+

 and 

cetyltrimethylammonium chloride (CTAC). Strikingly different shape evolution was 

observed in the presence of Cu
2+ 

and binary surfactant systems. Overgrowth of Au NRs 

in the benzyldimethylhexadecylammonium Chloride (BDAC)/CTAC binary surfactant 

system resulted in the formation of Au convex nanocuboids (CVNCBs), while Au 

concave nanocuboids (CCNCBs) were obtained in the presence of CTAB/CTAC binary 

surfactants.   

    We used a combination of scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), selected area electron diffraction (SAED), and energy dispersive 

spectroscopy (EDS) to fully characterize the crystalline structures and bulk compositions 

of the Au NCBs, CVNBCs, and CCNCBs. As shown in Figures 6.1B-D, each Au NCB 

exhibited well-defined cuboidal morphology enclosed by 6 low-index {100} facets. The 

SAED pattern of an individual Au NCB projected along the [001] zone axis (Figure 6.1E) 

further verified the single-crystalline face-centered cubic (fcc) structure of the particle. A 

CVNCB can be geometrically derived from a NCB upon creation of 4 equivalent convex 
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facets on each {100} facet. Each CVNCB exhibited 24 well-defined convex facets and 

displayed orientation-dependent contours in the TEM images (Figures 6.1F-K). Figure 

6.1I shows the TEM image and SAED pattern of one single-crystalline CVNCB particle 

imaged with the electron beam projected along the [001] zone axis. Under this 

orientation, 8 out of the 24 facets became parallel to the projection direction and the 

characteristic dihedral angles were measured to be 23.2° on average, indicating that each 

CVNCB was enclosed by 24 high-index {730} facets.
30,31

 In striking contrast to 

CVNCBs, a CCNCB is geometrically derived from a NCB upon introduction of surface 

indentation to the {100} facet, which can be clearly visualized in SEM (Figures 6.1L and 

6.1M) and TEM images (Figures 6.1N-6.1Q). When a single-crystalline CCNCB particle 

was projected along the [001] zone axis, 8 out of the 24 facets became parallel to the 

projection direction and the average dihedral angles were measured to be 20.6° (Figure 

6.1O), allowing us to assign the CCNCB facets as high-index {830} facets. The bulk 

compositions of the NCBs, CVNCBs, and CCNCBs were all verified to be Au based on 

the EDS results. 

    For fcc noble metals, such as Au, Ag and Pd, the high-index facets have significantly 

higher surface energies than those of the thermodynamically stable low-index {111} and 

{100} facets and thus are typically eliminated during nanocrystal growth.
32,33

 However, 

interactions of foreign ions and surfactants with the nanocrystal surfaces may shift the 

relative energies of various facets and consequently guide the nanocrystals to evolve into 

thermodynamically unexpected morphologies.
34-39

 While none of the Cu, N, Cl, or Br 

elements from the surface-adsorbed ions and surfactants were detectable using EDS, X-

ray photoelectron spectroscopy (XPS) results clearly showed the presence of both Cu  
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Figure 6.1. Synthesis and structural characterizations of Au NCBs, CVNCBs, and CCNCBs. (A) 

Schematic illustration of the selective formation of Au NCBs, CVNCBs, and CCNCBs under 

appropriate conditions. (B,C) SEM and (D) TEM images of Au NCBs. (E) TEM image of one 

individual Au NCB viewed along the [001] projection. The insets of panel E show the geometric 

model and SAED pattern of the Au NCB particle. (F,G) SEM and (H) TEM images of Au 

CVNCBs. (I) TEM image of one individual Au CVNCB viewed along the [001] projection. The 

bottom insets of panel I show the geometric model and SAED pattern of the Au CVNCB particle. 

(J,K) TEM images and the corresponding geometric models of individual Au CVNCBs with 

various orientations on the TEM grid. (L,M) SEM and (N) TEM images of Au CCNCBs. (O) 

TEM image of one individual Au CCNCB viewed along the [001] projection. The insets of panel 

O show the geometric model and SAED pattern of the Au CCNCB particle. (P,Q) TEM images 

and the corresponding geometric models of individual Au CCNCBs with various orientations on 

the TEM grid. 

 

 

species and surfactants on the surfaces of NCBs, CVNCBs, and CCNCBs. XPS 

measurements also verified the presence of Ag and CTAB on the surfaces of the 

cylindrical Au NRs. While the atomic ratios of Cu:Au on the surfaces of NCBs, 
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CVNCBs, and CCNCBs were almost the same, the packing densities of the surfactants on 

the high-index faceting CVNCBs and CCNCBs were significantly higher than on the 

low-index faceting NCBs as reflected by the atomic ratios of Cl:Au and Br:Au (Figure 

6.2A), suggesting that stabilization of high-index facets requires relatively high 

surfactants packing densities. Au NRs exhibited an intermediate surfactant packing 

density most likely due to the coexistence of high-index and low-index facets on their 

surfaces. It has been reported that halide-containing cationic surfactants, such as CTAB, 

CTAC, and BDAC, form positively charged, self-assembled bilayers on Au nanoparticle 

surfaces.
6,7,10,14,15,19

 As shown in Figure 6.2B, the surfaces of freshly prepared Au NCBs, 

 VN Bs,   N Bs, and NRs were all positively charged, and the ζ-potential values 

correlated very well with the relative surface packing densities of the surfactants. High-

resolution XPS spectra of the Cu 2p region (Figure 6.2C) revealed that Cu
2+ 

was mostly 

reduced to Cu(I) species
 
on the surfaces

 
of Au NCBs, CVNCBs, and CCNCBs. 

Interestingly, we also identified trace amount of Cu
 
(II) species

 
on the surfaces of 

CVNCBs and CCNCBs, while only Cu(I) signals were detectable on the NCB surfaces. 

The XPS results indicate that the coexistence of Cu(I) and Cu(II) species may play a 

crucial role in stabilizing the high-index {hk0} facets, though the detailed mechanisms 

still remains unclear at this stage. The surface adsorption of Cu (I) and surfactants did not 

modify the lattices or the electronic band structures of Au surface atoms to any detectable 

extent because no peak shift or split was observed in the high-resolution XPS spectra of 

Au 4f region (Figure 6.2D) in comparison to the spectrum of bulk Au. 
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Figure 6.2. Surface compositions of Au NCBs, CVNCBs, and CCNCBs. (A) Atomic ratios of 

Cu/Au, Ag/Au, Cl/Au, and Br/Au on the surfaces of Au NCBs, CVNCBs, CCNCBs, and NRs 

obtained from XPS measurements. (B) ζ-Potentials of Au NCBs, CVNCBs, CCNCBs, and NRs. 

(C) High-resolution XPS spectra of the Cu 2p region of Au NCBs, CVNCBs, and CCNCBs. The 

Cu 2p3/2 and Cu 2p1/2 peaks of the CVNCBs and CCNCBs are further separated into Cu(I) and 

Cu(II) peaks. The asterisks indicate the satellite peaks of Cu(II) 2p3/2 and Cu(II) 2p1/2. (D) High-

resolution XPS spectra of the Au 4f region of NCBs, CVNCBs, and CCNCBs. 

 

 

    The formation of well-defined {100} facets on Au NCBs upon NR overgrowth was 

mostly likely to be a consequence of selective stabilization of the {100} facets by 

CTAC.
40-42

 When BDAC was used as the surfactant, faceted Au NRs with irregular 

surface convexity were obtained while the use of CTAB as the surfactant led to the 

formation of faceted NRs with concave surfaces and truncated corners. In BDAC/CTAB 

binary surfactants, irregularly shaped Au NRs were obtained as the development of 

surface convexity and concavity canceled out. These interesting observations implicate 

that BDAC facilitated the formation of convex surfaces while CTAB favored surface 

concavity. Therefore, the combination of CTAC with BDAC and CATB provided a 

unique pathway to generate well-defined high-index {hk0} facets upon selective creation 

of surface convexity and concavity, respectively.  
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To further investigate the effects of Cu
2+

 on the facet evolution, control experiments 

were conducted in the presence of varying amount of Cu
2+ 

while all the other 

experimental parameters were kept at the optimal conditions for NCB, CVNCB, and 

CCNCB growth. We found that only within narrow Cu
2+

 concentration windows could 

Au NCBs, CVNCBs, and CCNCBs with well-defined facets be obtained through NR 

overgrowth. Outside the optimal Cu
2+

 concentration windows, Au nanostructures with ill-

defined rod-like shapes enclosed by multiple types of facets were obtained. Therefore, it 

is the unique combination of appropriate surfactants with Cu
2+

 in the optimal 

concentration range that enabled us to fine-modulate the shape evolution and thus fine-

tailor the facets of the anisotropic Au nanoparticles. 

    The faceted anisotropic Au nanoparticles exhibited greatly enriched extinction spectral 

features and enhanced plasmonic tunability in comparison to the conventional cylindrical 

Au NRs. The aspect ratios of the Au NCBs, CVNCBs, and CCNCBs could be fine-tuned 

either by changing the aspect ratio of the starting Au NR seeds or by adjusting the 

amount of HAuCl4 added. The Au CVNCBs and CCNCBs shown in Figure 6.1 were both 

derived from NCBs with the same dimensions, allowing us to quantitatively evaluate the 

effects of surface convexity and concavity on the plasmonic features of the particles. 

Figure 6.3A shows the optical extinction spectra of aqueous colloidal suspensions of Au 

NRs, NCBs, CVNCBs, and CCNCBs at the same particle concentration (5 x 10
8
 particle 

mL
-1

), which allowed us to directly compare both the plasmon resonance wavelengths 

and the relative optical cross-sections of the nanoparticles. The cylindrical Au NRs 

(length: 98 + 4.2 nm; transverse width: 32 + 2.1 nm; aspect ratio: ~ 3) exhibited a strong 

longitudinal plasmon peak at 769 nm and a weak transverse plasmon peak at 516 nm, 
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respectively. Although Au NCBs (length: 115 + 3.8 nm; transverse width: 46 + 1.8 nm; 

aspect ratio: ~ 2.5) had a lower aspect ratio than the Au NRs, their transverse and 

longitudinal plasmon resonances both red-shifted due to their cuboidal morphology. 

Similar plasmon red-shifts were also observed when Au or Ag nanospheres were 

converted into nanocubes of similar sizes.
43,44

 Interestingly, introduction of surface 

convexity to the NCBs caused spectral blue-shifts of the plasmon resonances, whereas 

surface concavity significantly red-shifted both the transverse and longitudinal plasmon 

resonances. All the faceted anisotropic nanostructures, especially the CVNCBs and 

CCNCBS, exhibited significantly enhanced transverse plasmon peak intensities in 

comparison to the cylindrical NRs. To more quantitatively understand the geometry-

dependent plasmonic characteristics of the particles, we used discrete dipole 

approximation (DDA) to calculate the extinction spectra of a Au NR, NCB, CVNCB, and 

CCNCB whose geometric parameters were extracted from the TEM and SEM images. 

Both the plasmon resonance frequencies and spectral line-shapes calculated by DDA 

were in excellent agreement with the experimental results. The calculated extinction 

spectrum of CCNCB exhibited multiple transverse plasmon peaks, which correlated well 

with the asymmetrically broadened transverse plasmon band observed in the 

experimental extinction spectrum of Au CCNCBs. 
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Figure 6.3. Optical properties of Au NRs, NCBs, CVNCBs, and CCNCBs. (A) Experimental (top 

panel) and calculated (bottom panel) extinction spectra of Au NRs, NCBs, CVNCBs, and 

CCNCBs. (B) Experimentally measured and calculated localized surface plasmon resonance 

(LSPR) sensitivities of the longitudinal and transverse plasmon modes of Au NRs, NCBs, 

CVNCBs, and CCNCBs. The error bars represent the standard deviations of least-squares curve 

fitting using linear functions. (C) Cross-sectional views of calculated near-field enhancements of 

Au NR, NCB, CVNCB, and CCNCB at resonant excitations for the longitudinal and transverse 

plasmon modes. The field enhancements are plotted on a logarithm scale (log|E/E0|
2
). The 

geometries of NR, NCB, CVNCB, and CCNCB in three-dimensional Cartesian coordinates are 

illustrated. Two planes (a and b) perpendicular to the incident plane wave k are shown for the 

transverse and longitudinal modes. (D) Representative SERS spectra of 4-NTP self-assembled 

monolayers on Au NRs, NCBs, CVNCBs, and CCNCBs. The bottom spectrum is the normal 

Raman spectrum of 4-NTP. (E) Experimentally determined SERS enhancement factors on Au 

NRs, NCBs, CVNCBs, and CCNCBs at 785 nm excitation. Three Raman modes of 4-NTP at 

1076, 1338, and 1570 cm
-1

 are used for the calculation of enhancement factors. (F) Calculated 

enhancements averaged over particle surfaces (⟨|E/E0|Exc
2
×|E/E0|Raman

2⟩) of Au NRs, NCBs, 

CVNCBs, and CCNCBs at 785 nm excitation. |E/E0|Exc and |E/E0|Raman refer to the field 

enhancements at excitation wavelength (785 nm) and Raman scattering wavelengths, 

respectively.  

 

Because the plasmonic features were sensitively dependent on both the aspect ratios 

and surface convexity/concavity of the particles, we were able to use extinction 

spectroscopy in combination with electron microscopies to gain detailed insights into the 
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nanoparticle structural evolution as the amount of HAuCl4 varied. In the presence of Cu
2+

 

and CTAC, the NR overgrowth resulted in the formation of Au NCBs whose aspect ratios 

progressively decreased as the amount of HAuCl4 increased until reaching a threshold 

point where the NCBs evolved into irregularly shaped nanoparticles. Both the 

longitudinal and transverse plasmon resonances slightly blue-shifted and became 

progressively more intense as the aspect ratios of NCBs decreased. Au CVNCBs 

underwent a unique geometric evolution as the amount of HAuCl4 varied. The surface 

convexity was initiated at discrete locations, then gradually propagated along the 

longitudinal axis of the particles, and eventually merged into continuous {730} facets as 

increasing amount of Au was grown on the nanoparticle surfaces. The surface convexity 

caused blue-shift of the longitudinal plasmon resonances. The double-peaked spectral 

feature for the transverse plasmon resonances was characteristic of discontinuity of 

surface convexity and the extinction peak at ~ 570 nm completely disappeared upon the 

formation of fully developed CVNCBs with well-defined {730} facets.  For Au 

CCNCBs, both the degree of surface indentation and transverse widths increased with the 

amount of HAuCl4. Both the longitudinal and transverse plasmon peaks of Au CCNCBs 

progressively red-shifted and became more intense as the amount of HAuCl4 increased. 

The peak-split and asymmetric broadening of the transverse plasmon band are a unique 

feature of surface concavity on anisotropic Au nanoparticles.
24

  

The faceted Au NRs exhibited enhanced plasmonic refractometric sensitivities in 

comparison to the conventional cylindrical Au NRs. Both the longitudinal and transverse 

plasmon resonances progressively red-shifted as the refractive index of the surrounding 

medium (glycerol-water mixtures with varying volume percentages) increased. The 
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plasmon resonance shifts exhibited a linear dependence on the refractive indices. For all 

the anisotropic nanostructures, their longitudinal plasmon resonances displayed higher 

refractometric sensitivities than transverse plasmon resonances. The longitudinal plasmon 

resonance of CCNCBs exhibited a refractometric sensitivity of 650 nm RIU
-1

, 

significantly higher than those of NRs, NCBs, and CVNCBs (Figure 6.3B). While the 

transverse plasmon resonance of Au NRs was essentially insensitive to the refractive 

index of surrounding medium, the transverse plasmon resonances of Au NCBs, 

CVNCBs, and CCNCBs all exhibited greatly enhanced refractometric sensitivities. The 

calculated refractometric sensitivities of various plasmon modes were in excellent 

agreement with the experimental results (Figure 6.3B). The faceted Au NRs, especially 

CCNCBs, hold great promise for multiplex refractometric molecular sensing using both 

the longitudinal and transverse plasmon resonances of the same anisotropic 

nanostructure.   

The surface convexity and concavity also introduced interesting modifications to the 

near-field plasmonic properties of the nanoparticles. Figure 6.4C shows the cross-

sectional views of calculated near-field enhancements (|E/E0|
2
 plotted in a logarithm 

scale) of a Au NR, NCB, CVNCB, and CCNCB at resonance excitations. Much higher 

local-field enhancements were generated upon excitation of the longitudinal plasmons 

than the transverse plasmons due to the stronger coupling of light with the plasmons 

along the longitudinal direction. The NCB, CVNCB, and CCNCB all exhibited 

significantly more intense local-field enhancements than the cylindrical NR upon 

excitation of their transverse plasmon resonances. The maximum plasmonic field 

enhancements were located in close proximity to the particle corners and edges, 
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providing hot spots for SERS on individual nanoparticles. To experimentally assess the 

near-field enhancements, we measured SERS of 4-nitrothiophenol (4-NTP) self-

assembled monolayers (SAMs) on the surfaces of Au NRs, NCBs, CVNCBs, and 

CCNCBs. After displacements of CTAC, CTAB, or BDAC with 4-NTP on the 

nanoparticle surfaces, both the facets and particle geometries were well-preserved. The 

SERS spectra shown in Figure 6.3D were collected on colloidal suspensions (~1.0 × 10
11

 

particles mL
−1

) of nanoparticles coated with 4-NTP SAMs at 785 nm excitation. We 

estimated the enhancement factors (EFs) by comparing SERS signals to normal Raman 

signals from pure 4-NTP based on three Raman modes at 1076 cm
-1

, 1338 cm
-1

, and 1570 

cm
-1

, respectively. Among the four nanostructures, Au NCBs exhibited the highest EFs 

on the order of 10
7
 because of the presence of hot spots at the particle corners and the 

resonance excitation of their longitudinal plasmon. Although the plasmons of Au 

CVNCBs and CCNCBs were off resonance with the excitation laser, EFs on the order of 

10
6
 were still achieved on individual colloidal nanoparticles. These empirical EFs 

represented the averaged enhancements over entire nanoparticle surfaces. The localized 

EFs in the hot spots at the particle corners were estimated to be at least one order of 

magnitude higher than the average EFs. We also used DDA to calculate the surface-

averaged field enhancements at both the excitation wavelength (785 nm) and the Raman 

scattering wavelengths. The calculated field enhancements (Figure 6.3F) correlated 

extremely well with the experimental SERS results. The experimentally estimated EFs 

were ~100 times higher than the calculated <|E/E0|Exc
2
×|E/E0|Raman

2
> values because DDA 

only calculated the electromagnetic enhancements without considering the chemical 

enhancements in SERS.  
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The well-defined facets of Au NCBs, CVNCBs, and CCNCBs enabled us to 

quantitatively correlate the atomic-level surface structures with the catalytic activities of 

the nanoparticles. We used the room temperature catalytic hydrogenation of 4-

nitrophenol (4-NP) by ammonia borane (AB) as a model reaction to assess the catalytic 

activities of various facets. AB is a stable hydrogen storage material in aqueous 

environments with hydrogen storage capacity as high as 19.5 wt %.
45

 When AB and 4-NP 

were mixed in aqueous K2CO3 solution (pH ~ 10), no hydrogenation reaction was 

observed at room temperature over extended time periods up to a few days. Hydrogen 

release from AB can be catalyzed by metallic nanoparticles and the released hydrogen 

may be further used to drive hydrogenation of organic molecules.
46

 Rapid hydrogenation 

of 4-NP was observed when AB and 4-NP were mixed in aqueous K2CO3 solution in the 

presence of colloidal Au nanoparticles and the reaction kinetics could be monitored, in 

real time, using UV-vis spectroscopy. The high-index faceting CVNCBs and CCNCBs 

exhibited much higher catalytic activities than the low-index faceting NCBs. Au NRs 

showed intermediate catalytic activities due to the coexistence of high-index and low-

index facets on their curved surfaces. However, the UV-vis spectroscopic results only 

allowed us to qualitatively compare the relative activities of various types of Au facets 

because they did not necessarily reflect the intrinsic facet-dependent catalytic activities. 

The UV-vis spectroscopy measured the overall kinetics of multi-step processes including 

adsorption of the reactants, surface-catalyzed molecular transformations, and desorption 

of reactants, and the surface-capping ligands might further complicate the overall reaction 

kinetics. Remarkable deviation from pseudo-first order reaction kinetics was observed 

even though AB was in great excess with respect to 4-NP. In addition, an induction time 
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during which no hydrogenation occurred was observed at the initial stage of the reactions, 

which was most likely due to the complication from diffusion and surface adsorption of 

4-NP and AB.   

The strong plasmonic field enhancements on Au NCBs, CVNCBs, and CCNCBs 

provided unique opportunities for us to spectroscopically monitor the catalytic 

hydrogenation of surface-adsorbed 4-nitrothiophenol (4-NTP) by AB using time-resolved 

SERS. We used a confocal Raman microscope with an effective excitation volume of 

~100 fL such that each freely-diffusing colloidal nanoparticle was exposed to the 

excitation laser for a short time period (within the diffusion time), effectively eliminating 

possible plasmon-driven photoreactions. Because both the reactant and product molecules 

were immobilized as SAMs on the nanocatalyst surfaces, it became possible to unravel 

the intrinsic surface reaction kinetics with minimal complication introduced by the 

surface-capping ligands as well as the diffusion, adsorption, and desorption of reactants 

and products. The high sensitivity and unique fingerprinting capability of SERS further 

enabled us to identify transient intermediates along the reaction pathways. As 

schematically illustrated in Figure 6.4A, this catalytic hydrogenation reaction was 

essentially a two-step consecutive reaction. 4-NTP and 4-aminothiolphenol (4-ATP) were 

the reactant and final product, respectively, and 4,4’-dimercaptoazobenzene (DMAB) 

was identified as the intermediate. 
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Figure 6.4. Facet-dependent catalytic activities of Au NCBs, CVNCBs, and CCNCBs. (A) 

Schematic illustration of the catalytic hydrogenation of surface-adsorbed 4-NTP by AB. The 

reaction is illustrated as a two-step consecutive process (4-NTP is the reactant, DMAB is the 

intermediate, and 4-ATP is the final product). Two-dimensional color-coded intensity maps of 

time-resolved SERS spectra collected from 4-NTP molecules adsorbed on the surfaces of Au (B) 

CVNCB, (D) CCNCB, and (E) NCB at different reaction times after exposure to 2 mM AB. (C) 

Representative SERS spectra collected from 4-NTP molecules adsorbed on the surfaces of Au 

CVNCBs at reaction times of 0, 70, and 116 s. (F) θ4-NTP and (G) θ4-ATP as a function of reaction 

time (t) during the reactions catalyzed by Au CVNCBs, CCNCBs, and NCBs. The error bars 

show the standard deviations obtained from five experimental runs under identical reaction 

conditions. The results of the least-squares curve fitting are shown as solid curves for the 

reactants and products. (H) Comparison of k1 and k2 on Au CVNCBs, CCNCBs, and NCBs. (I) k1 

and (J) k2 as a function of AB concentrations (CAB) on Au CVNCBs, CCNCBs, and NCBs. The 

results of the least-squares fitting using the Langmuir adsorption isotherms are shown as solid 

curves. Comparison of (K) KEQ1 and KEQ2 and (L) α1 and α2 of the two-step surface reactions on 

Au CVNCBs, CCNCBs, and NCBs. 
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As shown in Figures 6.4B-E, 4-NTP exhibited three characteristic Raman modes at 

1076, 1338, and 1570 cm
-1

, which were assigned to the C-S stretching, O-N-O stretching, 

and the phenol-ring modes, respectively.
47,48

 Upon exposure of the 4-NTP-coated 

nanoparticles to 2 mM AB, the intensities of both 1338 and 1570 cm
-1

 peaks gradually 

decreased with the concomitant emergence of a new peak at 1590 cm
-1

 corresponding to 

the phenol-ring modes of 4-ATP.
48,49

 The Raman peaks at 1140, 1388, and 1438 cm
-1

 

were the characteristic C-N and N-N stretching modes of DMAB.
49,50

 Time-resolved 

SERS results clearly showed that high-index faceting Au CVNCBs and CCNCBs 

exhibited much higher catalytic activities than the low-index faceting NCBs, which was 

in line with the UV-vis results. Interestingly, because 4-NTP molecules were pre-

adsorbed on the nanocatalyst surfaces, no induction time was observed in time-resolved 

SERS.  We chose the Raman modes at 1338 and 1590 cm
-1

 to quantify the fractions of 

reactant (θ4-NTP) and product (θ4-ATP), respectively, at a function of reaction time (t). 

Because AB was in great excess, this catalytic reaction obeyed pseudo-first-order 

kinetics. The two rate constants, k1 and k2, were obtained by performing least-squares 

curve fitting to the reactant and product trajectories shown in Figures 6.4F and 6.4G 

using the following rate equations:   

tk

NTP4
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As shown in Figure 6.4H, k1 was significantly smaller than k2 regardless of the 

nanoparticle geometries, indicating that the formation of DMAB was the rate-limiting 

step. Both Au CVNCBs and CCNCBs exhibited significantly higher catalytic activities 
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with k1 approximately 10 times larger than that of Au NCBs. The enhanced catalysis on 

high-index facets can be interpreted in the context of undercoordinated surface atoms at 

the surface atomic steps, which serve as the active sites for heterogeneous catalysis. The 

atomic coordination number of the surface atoms on the {100} facet is 8 while significant 

fractions of surface atoms have a lower coordination numbers of 6 on the high-index 

{730} and {830} facets. The {730} facet exhibited even higher catalytic activity than that 

of the {830} facet because of the higher fraction of surface atoms with coordination of 6.  

To gain further mechanistic insights into the enhanced catalysis on high-index facets, 

we studied the kinetics of the catalytic hydrogenation reaction at different AB 

concentrations. As shown in Figures 6.4I and 6.4J, the pseudo-first order rate constants, 

k1 and k2, both increased with the AB concentration, CAB. The rate constants on high-

index facets were more sensitively dependent on CAB than those on the low-index {100} 

facet. Under our experimental conditions, the pseudo-first order rate constants appeared 

to be proportional to the surface coverage of AB (θAB) and the adsorption of AB was 

further found to follow the Langmuir isothermal adsorption. The reaction kinetics could 

be well described using the apparent rate laws for an elementary reaction between the 

pre-immobilized 4-NTP and surface-adsorbed AB, though the detailed mechanisms might 

be even more complicated. The equilibrium constants for adsorption/desorption of AB on 

various Au facets were obtained by fitting the experimental data with the following 

equations: 
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where α1 and α2 are two fractional factors linking the pseudo-first-order rate constants and 

surface-coverages of AB. KEQ1 and KEQ2 represent two equilibrium constants of 

adsorption/desorption of AB molecules on Au surfaces pre-adsorbed with 4-NTP and 

DMAB, respectively. KEQ1 was significantly smaller than KEQ2 on all three nanostructures 

(Figures 6.4K and 6.4L), suggesting that the conversion of 4-NTP to DMAB facilitated 

the adsorption of AB onto the Au surfaces. Therefore, the conversion of 4-NTP into 

DMAB was the rate limiting step while the conversion of DMAB into 4-ATP was a faster 

reaction step. While the both α1 and α2 appeared facet-independent, both the KEQ1 and 

KEQ2 values correlated well with the relative catalytic activities of various facets. The 

KEQ1 and KEQ2 values on the high-index facets were significantly higher than those on the 

{100} facet, strongly indicating that the undercoordinated surface atoms on high-index 

facets exhibited higher affinity for adsorption of AB molecules, and thus served as 

catalytically more active sites for this hydrogenation reaction.  

The fraction of the intermediate, DMAB, was determined by the ratios between k1 and 

k2, which were both facet- and CAB-dependent.  The k1/k2 values on the high-index facets 

were higher than on the {100} facet at the same AB concentrations. Therefore, higher 

fraction of DMAB could be obtained on Au CVNCBs and CCNCBs than on NCBs 

(Figures 6.4B-E).  Regardless of the nanoparticle facets, the k1/k2 values increased with 

CAB till reaching a plateau at CAB above 4 mM. Maximum faction of DMAB formed 

during the CVNCB-catalyzed 4-NTP hydrogenation at CAB of 4 mM was much higher 

than at CAB of 0.1 mM. Therefore, the fraction of the intermediate could be effectively 

modulated by either tuning the facets of Au nanocatalysts or by changing the 

concentration of AB.  
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6.4 Conclusions 

In summary, we have demonstrated that well-defined low-index and high-index facets 

can be controllably created on the surfaces of cylindrical Au NRs through overgrowth 

processes that are synergistically guided by Cu
2+

 and cationic surfactants. CTAC plays a 

crucial role in selectively stabilizing the Au {100} facets and thus facilitates the 

formation of Au NCBs. More interestingly, when binary surfactants, such as 

CTAC/BDAC and CTAC/CTAB, are used, surface convexity and concavity can be 

controllably created through which high-index faceting Au CVNCBs and CCNCBs are 

obtained. This Cu
2+

- and surfactant-coguided NR overgrowth approach allows us to fine-

control both the aspect ratios and the facets of anisotropic Au nanostructures, advancing 

geometry control of nanoparticles to an unprecedented level of precision and detail far 

beyond the state-of-the-art seed-mediated Au NR synthesis. The surface convexity and 

concavity of faceted Au nanostructures provide additional geometric parameters that one 

can tailor to further fine-tune the far-field and near-field plasmonic properties of 

nanoparticles. Creation of well-defined facets on optically tunable Au NRs provides 

unique opportunities of using SERS as a noninvasive in situ spectroscopic tool to fully 

characterize catalytic molecular transformations at nanoparticle-molecule interfaces in 

real time, further enabling us to gain quantitative insights into the underlying relationship 

between the atomic-level surface structures and intrinsic activities of Au nanocatalysts. 
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CHAPTER 7 

Facet Control of Gold Nanorods 
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7.1 Introduction 

Ever since its discovery in 1990s,
1
 Au nanorod has been a model system for exploring the 

anisotropic shape evolution of nanocrystals with thermodynamically unexpected 

geometries.
2-12

 The state-of-the-art colloidal synthesis of single-crystalline Au nanorods 

involves seed-mediated anisotropic nanocrystal growth coguided by a foreign metal ion, 

Ag+, and halide-containing cationic surfactants, typically cetyltrimethylammonium 

bromide (CTAB).
2-4,9-14

 While detailed mechanistic understanding of the synergy 

between Ag
+
 ions and the surfactants still remains elusive,

15-19
 this seed-mediated growth 

method has become the most popular approach to the realization of precise control over 

both the longitudinal and transverse dimensions of cylindrical Au nanorods. Tight control 

over nanorod aspect ratios allows one to fine-tune the plasmon resonances over a broad 

spectral range that spans the entire visible and near-infrared regions.
3,4,7,8,11

 Such 

exceptional tunability of plasmon-dominated light absorption and scattering properties, 

when combined with the rich chemistry for surface functionalization of Au, endows Au 

nanorods with great promise for applications in diverse areas, such as plasmon-enhanced 

spectroscopies,
20-25

 molecular sensing,
26-28

 bioimaging,
8,29-33

 drug delivery,
30,34,35

 and 

photothermal cancer therapy.
8,29,30,32,36

 

    Equally important to the control over nanorod aspect ratios is the capability of fine-

tailoring the surface structures of Au nanorods with atomic-level precision. For many 

biomedical and biosensing applications, the nature of the surface ligands around Au 

nanorods may be even more important than the Au core itself in terms of interfacial 

chemistry and biocompatibility.
8,9,30

 The crystallographic facets exposed on Au nanorod 

surfaces play pivotal roles in determining the affinity, specificity, and dynamics of the 
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interactions between ligand molecules and Au surfaces.
9
 In addition, deliberate facet 

control opens up unique opportunities to functionalize the nanorod surfaces with desired 

molecular moieties in a site-selective manner, enabling the molecularly guided assembly 

of Au nanorods into mesoscopic hierarchical superstructures with desired architectures 

and functionalities.
37-41

 Furthermore, precise facet control is vital to the optimization of 

the catalytic performance of Au nanorods. Inhomogeneous site-specific catalytic 

activities were recently observed on individual single-crystalline Au nanorods, which are 

intimately tied to the geometric distribution of various local facets and defects on the 

nanorod surfaces.
42

 In striking contrast to the great success achieved in fine-tuning the 

aspect ratios, the seed-mediated nanorod synthesis unfortunately offers limited capability 

of facet control.
7,9-11,43-48

 Although typically exhibiting a cylindrical morphology with 

two rounded ends, experimentally fabricated Au nanorods are essentially enclosed by 

multifaceted surfaces composed of a mixture of various types of high-index and low-

index facets that are capped with surfactants and other adsorbates.
9,43-45,49-51

 Quantitative 

assignment of the crystallographic facets exposed on the surfaces of Au nanorods, 

however, has long been a subject under intense debate.
9,43-45,49-51

 While catalytically 

active sites are abundant on the highly curved nanorod surfaces, it remains a significant 

challenge to quantitatively correlate the catalytic activities with the atomic-level surface 

structures due to the intrinsic structural complexity and poor control over the nanorod 

facets. 

    Conventional single-crystalline Au nanorods with a cylindrical morphology are 

typically prepared by seed-mediated growth in the presence of Ag
+
 and CTAB.

4,9-11
 The 

nanorod growth is initiated by adding colloidal Au seeds (∼2-4 nm in diameter) into a 



www.manaraa.com

 

181 

growth solution containing HAuCl4 (Au precursor), Ag
+
 (structure-directing foreign ion), 

CTAB (surface capping surfactant), and ascorbic acid (mild reducing agent). The most 

convenient way to tune the nanorod aspect ratios is to vary the concentration of Ag
+
 in 

the growth solution, while the aspect ratios and surface curvature of Au nanorods can be 

further fine-tuned through post-fabrication overgrowth
46,47,52-56 

or anisotropic oxidative 

etching processes.
57,58

 Recently, Murray and co-workers demonstrated that Au nanorods 

enclosed exclusively by one specific type of high-index {hk0} facets could be fabricated 

using binary surfactant mixtures instead of CTAB to guide the seed-mediated growth.
59,60

 

These {hk0}-faceting Au nanorods are geometrically defined as elongated 

tetrahexahedral (ETHH) nanoparticles (NPs).
61,62

 The {hk0} facets, composed of 

alternating {100}/{110} terraces and steps, possess high fraction of coordinatively 

unsaturated surface atoms that are catalytically much more active than the close-packed 

surface atoms on the low-index {100} and {111} facets.
63,64

 More recently, we found that 

the {hk0}-faceting Au ETHH NPs, also known as convex nanocuboids, could be 

fabricated through overgrowth of preformed cylindrical Au nanorods in the presence of 

cupric (Cu
2+

) ions and appropriate binary surfactant mixtures.
65

 In this chapter, we use 

the Au ETHH NPs as the starting materials to demonstrate that an entire family of high-

index and low-index facets can be controllably created on the surfaces of single-

crystalline nanorods using cuprous (Cu
+
) ions and CTAB as a unique pair of surface 

capping competitors to judiciously maneuver the thermodynamic and kinetic factors that 

govern the facet evolution during nanorod overgrowth. The unique combination of 

desired plasmonic properties and fine-tailored surface structures on Au nanorods enables 

us to gain detailed, quantitative insights into the facet-dependent catalytic molecular 
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transformations on Au nanoparticle (NP) surfaces using surface-enhanced Raman 

scattering (SERS) as an in situ plasmon-enhanced spectroscopic tool. 

7.2 Experimental Section 

Chemicals and Materials. All reagents were used as received without further 

purification. Ultrapure water (18.2 MΩ resistivity, Barnstead  asyPure II 7138) was used 

for all experiments. 

    Synthesis of Au ETHH NPs. Au ETHH NPs were prepared following a previously 

published protocol
59

 with minor modifications. Briefly, colloidal Au seeds were prepared 

by the reducing HAuCl4 with NaBH4 in the presence of CTAB. First, 5.0 mL of 0.5 mM 

HAuCl4 was mixed with 5 mL of 0.2 M CTAB solution. Then, 1.0 mL of ice-cold, 

freshly prepared 6 mM NaBH4 was quickly injected into the mixture under magnetic 

stirring (1200 rpm). The seed solution was stirred for 2 min and then left undisturbed for 

30 min before use. To prepare the Au ETHH NP growth solution, 7.0 g of CTAB and 

1.234 g of NaOL were dissolved in 250 mL of water at 60 °C. The solution was cooled to 

30 °C and then 24 mL of 4 mM AgNO3 was added. The mixture was kept undisturbed at 

30 °C for 15 min, followed by the addition of 250 mL of 1 mM HAuCl4. The solution 

became colorless after 90 min of stirring at 700 rpm and 1.8 mL HCl (37 wt % in water, 

12.1 M) was then introduced into the mixture. After another 15 min of slow magnetic stir 

at 400 rpm, 1.30 mL of 64 mM ascorbic acid was added. Finally, 0.4 mL of seed solution 

was injected into the growth solution and the mixture solution was vigorously stirred for 

another 30 s and then left undisturbed at 30 °C for 12 h. The resulting Au ETHH NPs 

were collected by centrifugation at 7000 rpm for 20 min followed by removal of the 

supernatant and finally redispersed in 30 mL of 20 mM CTAB. 
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    Synthesis of Au ETOH NPs. Au ETOH NPs were prepared via overgrowth of Au 

ETHH NPs in the presence of HAuCl4, CTAB, and AA. In a typical procedure, 200 μL of 

colloidal Au ETHH NPs were first redispersed in 100 μL 0.10 M CTAB after being 

washed once with water. The growth solution was prepared by sequentially adding H2O 

(7.40 mL), HAuCl4 (0.2 mL, 10 mM), and AA (1.0 mL, 0.10 M) into a CTAB (1.30 mL, 

0.10 M) solution. After gently mixing the growth solution for 30 s, the growth of Au 

ETOH was initiated by adding 100 μL of the Au ETHH NPs (in 0.1 M CTAB). The 

reaction solution was gently mixed for 30 s immediately after the addition of Au ETHH 

NPs and then left undisturbed at 30 °C for 1 h. The obtained Au ETOH NPs were washed 

with water twice through centrifugation/redispersion cycles, and finally redispersed in 

200 μL of 20 mM CTAB. The size and aspect-ratio of ETOH can be controlled by simply 

adjusting amount of HAuCl4 added. The total volume of the growth solutions was always 

fixed at 10.0 mL. 

    Synthesis of Au CCB, QCB, TCB, and EOH NPs. Au CCB, QCB, TCB, and EOH 

NPs were synthesized via overgrowth of Au ETHH NPs in the presence of Cu
2+

, HAuCl4, 

CTAB, and AA. In a typical procedure of CCB NP synthesis, 200 μL of Au ETHH NPs 

were first redispersed in 100 μL 0.10 M CTAB after being washed once with water. The 

growth solution was prepared by sequentially adding H2O (7.395 mL), HAuCl4 (0.2 mL, 

10 mM), Cu(NO3)2 (5 μL, 10 mM), and AA (1.0 mL, 0.10 M) into a CTAB (1.30 mL, 

0.10 M) solution. After gently mixing the growth solution for 30 s, the growth of Au 

CCB NPs was initiated by adding 100 μL of the Au ETHH NPs (in 0.1 M CTAB). The 

reaction solution was gently mixed for 30 s immediately after the addition of Au ETHH 

NPs and then left undisturbed at 30 °C for 1 h. The obtained Au CCB NPs were washed 
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with water twice through centrifugation/redispersion cycles, and finally redispersed in 

200 μL of 20 mM CTAB. The morphologies of Au CCB NPs evolved into QCB, TCB, 

and EOH when increasing amount of Cu
2+

 was added into the growth solution. The 

morphologies of the NPs could be controlled by adjusting the molar ratios between Cu
2+

 

and CTAB. In the presence of 14 mM CTAB, the optimal concentrations of Cu
2+

 were 5 

μM for CCB, 70 μM for QCB, 100 μM for TCB, and 300 μM for EOH NPs, respectively. 

The total volume of the growth solutions was always fixed at 10.0 mL. 

    Overgrowth of Au ETHH NPs in CTAB/NaOL Binary Surfactants. The ETHH 

morphology was well-preserved while the particle aspect ratios decreased during 

overgrowth of Au ETHH NPs in the presence of Ag
+
, HAuCl4, CTAB, NaOL, HCl, and 

AA.  

    Ag
+
-Guided Overgrowth of Au ETHH NPs. The ETHH NPs evolved into CCB, 

TCB, and EOH NPs composed of Au nanorod core and Au-Ag alloy shell upon 

overgrowth of Au ETHH NPs in the presence of Ag
+
, HAuCl4, CTAB, and AA.       

    Characterizations. The morphologies, structures, compositions, and surface 

properties of the NPs were characterized by TEM, SEM, EDS, HAADF-STEM, XPS, 

and ζ-potential measurements. The optical extinction spectra of the NPs were measured 

using a Beckman Coulter Du 640 spectrophotometer. Raman spectra were obtained on a 

Bayspec Nomadic Raman microscopy built on an Olympus BX51 microscope equipped 

with a 785 nm CW diode laser. SERS spectra were collected on colloidal suspensions of 

Au ETHH, ETOH, CCB, QCB, and EOH NPs coated with 4-NTP SAMs.  

    Catalytic Reaction Kinetics Studied by Time-Resolved SERS. To use SERS to 

study the catalytic reactions, we first pre-adsorbed SAMs of 4-NTP onto the surfaces of 
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Au ETHH, ETOH, CCB, QCB, and EOH NPs. The nanoparticle-catalyzed 4-NTP 

hydrogenation occurred at room temperature upon the addition of 20 μL of Au NPs (∼1.0 

× 10
11

 particles mL
-1

), 50 μL of ultrapure water, 10 μL of 10 mM K2CO3, and 20 μL of 

10 mM AB in a 0.5 mL Eppendorf centrifuge tube. The kinetics of the catalyzed 

reactions was measured in real time using time-resolved SERS. The excitation laser was 

focused on the reaction mixture using a 10× objective [Numerical Aperture (NA) = 0.30, 

working distance (WD) = 11.0 mm, Olympus MPLFLN]. The laser power was measured 

to be 10.0 mW at the samples and the signal acquisition time was 1 s for Au ETHH NPs, 

and 2s for all other samples, respectively. Successive SERS spectra were collected during 

the reaction until completion of the reduction of 4-NTP into 4-ATP. The total volume of 

the reaction mixtures was fixed at 100 μL. 

7.3 Results and Discussions 

For noble metals with face centered cubic (fcc) structures, such as Au, Pt, and Pd, the 

low-index {111} and {100} facets are thermodynamically more stable than the high-

index facets and are thus highly favored during nanocrystal growth.
63,64

 However, the 

surface energies of various facets can be significantly altered when the facets interact 

with surfactants and/or foreign ions, allowing the nanocrystals to evolve into exotic 

polyhedral geometries that are enclosed by high-index facets.
66-72

 On the other hand, the 

nanocrystal facet evolution can also be kinetically controlled using appropriate 

combinations of structure-directing ions and surface capping surfactants to modulate the 

degree of supersaturation of the crystal growth units.
73

 Starting from the Au ETHH NPs, 

we found that a series of interesting nanorod-derived geometries enclosed by well-

defined characteristic high-index and low-index facets, such as elongated trisoctahedral 
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(ETOH) NPs, concave cuboidal (CCB) NPs, quasi-cuboidal (QCB) NPs, truncated 

cuboidal (TCB) NPs, and elongated octahedral (EOH) NPs, could be obtained in a highly 

selective and controllable manner by systematically varying the molar ratio between Cu
2+

 

and CTAB in the ETHH NP overgrowth solution. 

    We first used scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) to characterize the structural evolution of Au ETHH NPs upon their 

overgrowth in the presence of 14 mM CTAB and varying concentrations of Cu
2+

. We 

synthesized Au ETHH NPs with aspect ratio of ∼3 (Figure 7.1A) following a previously 

reported seed-mediated growth method in a CTAB/oleate binary surfactant system
59

 with 

some minor modifications. Upon exposure to an overgrowth solution containing HAuCl4, 

ascorbic acid (AA), and CTAB, the Au ETHH NPs evolved into ETOH NPs with 

significantly increased lateral dimensions (Figure 7.1B). The ETOH NPs represent an 

interesting geometry derived from elongation of a trisoctahedron enclosed by 24 high-

index {hhk} facets (composed of alternating {110}/{111} terraces and steps). When Cu
2+

 

ions were introduced into the nanorod overgrowth solution, the ETHH NPs underwent 

drastically different structural evolution processes and the Cu
2+

/CTAB molar ratio was 

found to be a key knob that one could adjust to fine-control the facets of the resulting Au 

nanorods. At relatively low Cu
2+

 concentrations (e.g., [Cu
2+

] = 5 μM), Au CCB NPs with 

well-defined concave facets were obtained (Figure 7.1C). As discussed in greater detail 

later on, each CCB NP is exclusively enclosed by 24 high-index {hkk} facets, which are 

geometrically derived through combination of alternating {100}/{111} terraces and steps. 

As the Cu
2+

 concentration increased, the degree of surface indentation of the CCB NPs 

gradually decreased until Au QCB NPs (Figure 7.1D) whose surfaces were dominated by 
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{100} facets formed when the concentration of Cu
2+

 reached 70 μM. Further increase in 

Cu
2+

 concentration resulted in corner truncation of the QCB NPs, giving rise to the 

formation of TCB NPs (Figure 7.1E). Each TCB NP is enclosed by 4 {100} facets on the 

lateral sides, 2 {100} facets at the ends, and 8 {111} facets at the truncated corners. The 

corner truncation became progressively more significant as the Cu
2+

 concentration 

increased. The TCB NPs eventually evolved into EOH NPs with two sharp tips each of 

which was enclosed by 4 {111} facets (Figure 7.1F) when the {100} end facets 

completely disappeared at Cu
2+

 concentrations higher than 200 μM. The as-fabricated Au 

ETHH, ETOH, CCB, QCB, TCB, and EOH NPs all exhibited narrow size distributions 

and high geometric uniformity with yields typically higher than 95%. 

    Each faceted nanorod geometry exhibited its own characteristic plasmonic features in 

the optical extinction spectra (Figure 7.1G). The ETHH NPs displayed a longitudinal and 

a transverse plasmon resonance at ∼770 nm and ∼514 nm, respectively. The longitudinal 

plasmon peak was much stronger than the transverse plasmon peak because of stronger 

coupling of the incident light with the plasmons along the longitudinal axis of the NPs. 

Upon formation of ETOH NPs, both the longitudinal and transverse plasmon resonances 

red-shifted and the transverse plasmon peak became significantly stronger largely due to 

the increased lateral dimensions of the NPs. The development of surface concavity during 

the transition of ETOH to CCB NPs caused significant red-shifts of both the longitudinal 

and transverse plasmon resonances accompanied by increase in peak intensities. 

Interestingly, the transverse plasmon band split into two peaks, which was a unique 

spectral signature of nanorods with surface indentations on their lateral sides.
47,65

 

Decrease in surface indentation led to progressive blue-shift and weakening of both the 
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longitudinal and transverse plasmon peaks until the formation of QCB NPs. The 

longitudinal plasmon peak was observed to gradually blue-shift and become weaker 

while the transverse plasmon peak remained very robust at essentially fixed wavelengths 

as the degree of corner truncation of TCB NPs increased. The transverse plasmon peak 

became even stronger than the longitudinal plasmon peak when the TCB NPs eventually 

evolved into EOH NPs. Because both the plasmon resonance wavelengths and the optical 

extinction spectral line-shapes were sensitively dependent on the geometric details of the 

faceted Au nanorods, we were able to use optical extinction spectroscopy in combination 

with TEM to track detailed structural evolution as the Cu
2+

/CTAB ratio systematically 

varied. 

    We further used high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) to resolve the atomic-level surface structures of the faceted 

Au nanorods. The high-resolution HAADF-STEM images shown in Figure 7.2 were all 

taken with the electron beam projected along specific zone axes of individual NPs, which 

allowed us to resolve the atomic structures of specific facets exposed on the nanorod 

surfaces. The relative orientation of each NP with respect to the electron beam was 

further verified by the crystalline lattices in the high-resolution HAADF-STEM images 

and the fast-Fourier transform patterns of the images. In Figure 7.2, the geometric models 

and atomic-level structures of various facets were also illustrated. As shown in Figure 

7.2A-C, each Au ETHH NPs was exclusively enclosed by 24 {730} facets, which were 

identified by both the atomic steps shown in high resolution STEM images (Figure 7.2C-

i, 7.2C-ii, and 7.2C-iii) and the characteristic dihedral angles when the particle was 

projected along the [001] zone axis. The {730} facet consists of repeating high-index 



www.manaraa.com

 

189 

{210} and {310} local facets as illustrated in Figure 7.2A. The two ends of each ETOH 

NP were enclosed exclusively by high-index {221} facets while the lateral side facets 

were indexed as {110} (Figure 7.2D-F). Four of the 24 {221} facets and 2 of the 4 {110} 

facets became parallel to the electron beam when an  T   NP was projected along the 

 11 0] zone axis (Figure 7.2F, 2F-i, 2F-ii, and 2F-iii). The CCB NPs, each of which was 

enclosed by 24 concave facets with equivalent Miller indices, exhibited orientation-

dependent geometrical contours in the HAADF-STEM images (Figure 7.2G-J). When a 

CCB NP was projected along  11 0] zone axis (Figure 7.2J and 2J-i), 4 of the 24 facets 

were aligned parallel to the electron beam, allowing us to assign the facets to high-index 

{511} facet based on the arrangement of surface atoms. In comparison to the high-index 

faceting NPs, Au QCB NPs had a simpler geometry enclosed predominantly by 6 low-

index {100} facets with minor structural nonideality, such as slight corner truncations 

and defects on side facets, with respect to a perfect cuboid (Figure 7.2K,L). The exposed 

facets on Au TCB NPs were resolved as {111} at the truncated corners and {100} on side 

and end faces. When a TCB NP further evolved into an EOH NP, the {100} facets 

disappeared as the 4 {111} facets merged at each end of the NP (Figure 7.2M-O). The 

arrangement of surface atoms on {111} facets were resolved by high-resolution HAADF 

STEM images when an     NP was imaged under the project along the  11 0] zone axis 

(Figure 7.2O, 2O-i, and 2O-ii). We analyzed the characteristic angles of the high-index 

faceting NPs and the image intensity profiles along various lines across the NP cross 

sections, which further qualitatively confirmed the three-dimensional (3D) geometric 

profiles of the NPs observed in the SEM and TEM images. In all the high-resolution 

HAADF-STEM images shown in Figure 7.2, only the crystalline lattices of fcc Au were 
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resolved. Neither surface deposition of metallic Cu nor the formation of Au-Cu bimetallic 

alloy domains was observed, indicating the absence of metallic Cu(0) in these faceted 

nanorods. 

 

 

 

 

Figure 7.1. SEM and TEM images of Au (A) ETHH, (B) ETOH, (C) CCB, (D) QCB, (E) TCB, 

and (F) EOH NPs. The SEM images and TEM images are shown in the left and right columns, 

respectively. The insets show the geometric models of individual NPs. All the SEM and TEM 

images share the same scale bars in panel A. (G) Extinction spectra of colloidal Au ETHH, 

ETOH, CCB, QCB, TCB, and EOH NPs. The particle concentration was ∼1.0 × 10
11

 particles 

mL
-1

 for all the samples. 
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Figure 7.2. Atomic level surface structures of Au ETHH, ETOH, CCB, QCB, and EOH NPs. (A) 

Geometric models of an ETHH NP and {730} facet. (B,C) HAADF-STEM images of individual 

ETHH NPs. (D) Geometric models of an ETOH NP and {221} facet. (E,F) HADDF-STEM 

images of individual ETOH NPs. (G) Geometric models of a CCB NP and {511} facet. (H-J) 

HADDF-STEM images of individual CCB NPs. (K) Geometric models of a QCB NP and {100} 

facet. (L) HADDF-STEM image of an individual QCB NP. (M) Geometric models of EOH and 

{111} facet. (N,O) HADDF-STEM images of individual EOH NPs. The insets show the 

geometric models of the NPs viewed at the corresponding orientation. (x-i, x-ii, x-iii, x = C, F, J, 

L, O) High-resolution HAADF-STEM images of various regions (i, ii, and iii) for each NP shown 

in panels C, F, J, L, and O, respectively. These NPs were imaged with projection along the [001] 

zone a is for  T   and   B NPs, and  11 0] zone axis for ETOH, CCB and EOH NPs. The 

insets in panels C-i, F-i, J-i, L-i, L-iii, and O-i are the fast Fourier transform (FFT) patterns of the 

region shown in each panel, respectively. 

 

   Complementary to the two-dimensional (2D) microscopic imaging characterizations, 

electron tomography measurements allowed us to more accurately visualize the unique 



www.manaraa.com

 

192 

3D structures and more quantitatively index the facets of the high-index faceting NPs. 

For the 3D electron tomography, a series of Z-contrast STEM images were acquired by 

tilting the specimen over a wide range of angles from -70° to +70° at every 2° intervals 

using a field-emission instrument operated at 200 kV. The 3D tomograms were 

reconstructed using a multiplicative simultaneous iterative reconstruction technique 

(SIRT). The 3D reconstructions were visualized using isovalue surfaces in the Amira 

software. As shown in Figure 7.3, the reconstructed 3D geometries matched very well 

with the structural information obtained from the 2D TEM and HAADF-STEM images. 

The 3D tomography results further verified that the ETHH NPs and CCB NPs were 

predominantly enclosed by {730} and {511} facets, respectively. The two ends along the 

longitudinal axis of each ETOH NP were enclosed by {221} facets while the lateral sides 

were dominated by {110} facets. The experimentally fabricated NPs exhibited only slight 

deviations from the ideal geometric models. The corners and edges of the ETOH and 

CCB NPs appeared to be less sharp in the reconstructed 3D geometries in comparison to 

those observed in the TEM and SEM images possibly due to the fact that the exposure of 

NPs to electron beam over extended time periods during tilt-series tomography 

measurements may introduce slight geometric modifications to the sharp corners and 

edges of the NPs. In spite of their structural nonideality, all the nanorod-derived 

structures exhibited well-defined multifaceted geometries and their surfaces were 

dominated by their characteristic facets. The structural information obtained from SEM, 

TEM, HAADF-STEM, and 3D tomography measurements all agree with each other. 



www.manaraa.com

 

193 

 

Figure 7.3. 3D electron tomographic reconstructions (left panels), cross-sectional views of the 

2D projection of tomographic reconstructions (right upper panels), and the corresponding ideal 

geometric models (right bottom panels) of the high-index faceting nanorods: an ETHH NP 

viewed along (A)  100  zone a is and (B)  310  zone a is, an  T   NP viewed along ( )  11 0  

zone a is and (D)  100  zone a is, and a   B NP viewed along ( )  100  zone a is and ( )  11 0] 

zone axis. The characteristic geometric angles on the 2D projections are labeled for each 

geometry. 

 
 

    To gain further insights into the synergistic effects of Cu
2+

 and CTAB on the facet 

evolution of Au nanorods, we used X-ray photoelectron spectroscopy (XPS) and ζ-

potential measurements to fully characterize the surface compositions and charges of the 

faceted nanorods. Energy dispersive spectroscopy (EDS) results verified that the bulk 

composition of the faceted nanorods was monometallic Au and none of the Cu, Br, or N 

elements possibly existing in the surface adsorbates were detectable in EDS. However, Br 

signals were clearly resolved in XPS spectra collected on the Au ETHH, ETOH, CCB, 
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QCB, TCB, and EOH NPs, indicating the capping of the Au surfaces with CTAB. XPS 

results also verified the presence of Ag on the surfaces of Au ETHH NPs as a 

consequence of Ag
+
-guided seed-mediated growth. However, Ag became undetectable by 

XPS when the ETHH NPs overgrew into various faceted nanorods because XPS was a 

surface characterization technique with a penetration depth of only ∼1 nm under our 

experimental conditions. While no XPS signal of Cu was detectable on the surfaces of Au 

ETOH NPs, the XPS spectral features of Cu species were clearly resolvable on the CCB, 

QCB, TCB, and EOH NPs. High-resolution XPS spectra of the Cu 2p region (Figure 

7.4A) further revealed that Cu
2+

 was mostly reduced to Cu (I) species on the surfaces of 

Au CCB, QCB, and EOH NPs while the XPS signals of Cu (II) species were almost 

undetectable. The relative intensities of the Cu (I) 2p XPS peaks increased in the order of 

CCB < QCB < EOH NPs whereas the intensities of Br 3d peaks showed an opposite 

trend (Figure 7.4B), decreasing in the order of ETHH > ETOH > CCB > QCB > EOH 

NPs. As shown in Figure 7.4C, no peak shift or split was observed in the high-resolution 

XPS spectra of Au 4f region in comparison to the spectrum of bulk Au, indicating that 

the surface capping of Au facets by Cu (I) and CTAB did not modify the lattices or the 

electronic band structures of Au surface atoms to any detectable extent. This result 

provided additional evidence to the absence of metallic Cu on the overgrown faceted Au 

nanorods, which was in line with previous observations that Cu(II) ions could only be 

reduced to Cu(I), not metallic Cu(0), by ascorbic acid (AA) or sodium ascorbate in the 

presence of CTAB.
70,74

 To further verify the reduction of Cu
2+

 by AA into Cu(I) species 

during the nanorod overgrowth, bicinchoninic acid (BCA), a Cu
+
-specific chelating 

agent, was added into the nanorod overgrowth solution. The absorption peak centered at 



www.manaraa.com

 

195 

560 nm in the extinction spectrum was characteristic of the water-soluble, purple-colored 

Cu(I)-BCA complex.
75

 Therefore, it was cuprous ions (Cu
+
) rather than cupric ions 

(Cu
2+

) that played a key role in controlling the facet evolution of Au nanorods. 

 

 

Figure 7.4. High-resolution XPS spectra of the (A) Cu 2p, (B) Br 3d, and (C) Au 4f regions of 

Au ETHH, ETOH, CCB, QCB, and EOH NPs. The spectra are offset for clarity. (D) Atomic 

ratios of Cu/Au and Br/Au on the surfaces of Au ETHH, ETOH, CCB, QCB, and EOH NPs 

probed by XPS. (E) ζ-potentials of colloidal Au ETHH, ETOH, CCB, QCB, and EOH NPs. The 

samples for ζ-potential measurements were all freshly prepared, centrifuged, and redispersed in 1 

mM CTAB. The concentration of the colloids for ζ-potential measurements were kept at 2.0 × 

10
11

 particles mL
-1

 for all the samples. The pH of the colloidal suspension was 7.4. 

 

    We used the XPS results to quantify the relative packing densities of Cu (I) and CTAB 

on the NP surfaces based on the atomic ratios of Cu/Au and Br/Au. As shown in Figure 

7.4D, the packing densities of CTAB on the high-index faceting nanorods were 

significantly higher than those on the low-index faceting nanorods, decreasing in the 

order of ETHH > ETOH > CCB > QCB > EOH NPs. This trend correlated well with the 
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relative thermodynamic stability of the naked facets, suggesting that high surface packing 

density of CTAB might lower the surface energies and hence stabilize the high-index 

facets. In contrast, Cu(I) ions, when adsorbed on the Au surfaces, appeared to favor the 

formation of thermodynamically stable low-index facets. As a consequence, the high-

index {hkk} facets on CCB NPs gradually evolved into {100} facets on QCB NPs and 

eventually into the thermodynamically most stable {111} facets on EOH NPs as the 

surface coverage of Cu(I) increased. Cu(I) ions and CTAB appeared to be a pair of 

surface-capping competitors because the increase in surface packing density of Cu(I) was 

accompanied by a decrease in packing density of CTAB (Figure 7.4D). The relative 

surface packing densities of Cu(I) and CTAB on the surfaces of various faceted Au 

nanorods were further correlated to the ζ-potentials of the NPs (Figure 7.4E). All the 

nanostructures had positively charged surfaces due to the formation of CTAB self-

assembled bilayers on Au nanorod surfaces.
9
 The surface adsorbed Cu(I) ions provided 

additional contribution to the positive surface charges of the NPs. Despite their lower 

surface packing density of CTAB, the CCB NPs exhibited higher surface charges than the 

ETOH NPs owing to the presence of surface-adsorbed Cu(I). Although CTAB was more 

sparsely packed on the surfaces of EOH NPs than QCB NPs, the EOH NPs displayed a 

more positive ζ-potential value than the QCB NPs due to the higher surface packing 

density of Cu(I) ions. It is noteworthy that the ζ-potential values reported here 

represented the apparent effective ζ-potentials, which allowed us to qualitatively compare 

the relative surface charge densities of various NP samples. In our ζ-potential 

measurements, a commercial zeta potentiometer was used to measure the free mobility 

and effective hydrodynamic sizes of NPs, which were then converted into ζ-potentials 
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using simple theoretical formulas approximating the NP as a hard sphere homogeneously 

coated with a charged thin layer. For anisotropic Au nanorods, the obtained values of ζ-

potential were generally ∼10% higher than the results from the spherical approximation 

when theories for cylindrical particles were applied to ζ-potential calculations using the 

actual dimensions of Au nanorods (determined from electron microscopy 

measurements).
76

 More quantitative determination of accurate ζ-potentials, however, 

requires the incorporation of additional empirical or semi-empirical parameters, such as 

the geometric details of the faceted NPs and heterogeneous distribution of adsorbates on 

various facets, into the theoretical formulas, which is beyond the scope of this paper. 

    The facets of the overgrown Au nanorods could also be fine tailored through 

systematic variation of CTAB concentrations while keeping Cu
2+

 at fixed concentrations. 

The morphological evolution of the faceted Au nanorods as the CTAB concentration 

varied was tracked using a combination of optical extinction spectroscopy and TEM 

measurements (Figure 7.5). At relatively low Cu
2+

 concentrations (e.g., [Cu
2+

] = 10 μM), 

a structural evolution from TCB to CCB and eventually to ETOH was observed when the 

CTAB concentration progressively increased in the range from 3 to 51 mM. At relatively 

high Cu
2+

 concentrations (e.g., [Cu
2+

] = 100 μM), the NP morphologies gradually 

changed from EOH to TCB and eventually to CCB NPs as concentration of CTAB 

increased from 3 to 51 mM. Therefore, it was the molar ratio of Cu
2+

/CTAB rather than 

the absolute concentrations of Cu
2+

 and CTAB that determined the surface structures and 

hence the geometries of the overgrown Au nanorods. The competition between Cu
+
 and 

CTAB could be further modulated by adding BCA into the overgrowth solutions. The 

specific and strong chelating interactions between BCA and Cu
+
 ions effectively 
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inhibited the competition between Cu
+
 and CTAB. Therefore, Au ETOH NPs were 

always obtained regardless of the relative [Cu
2+

]/[CTAB] ratios when BCA was in excess 

with respect to Cu
+
. Analogous to Cu

+
 ions, we found that Pb

2+
 could also compete with 

CTAB, allowing the ETOH NPs to evolve into CCB NPs. However, Pb
2+ 

appeared to be 

much less effective than Cu
+
 in terms of facet control capability. The formation of CCB 

NPs required much higher concentrations of Pb
2+

 than those of Cu
2+

 mostly likely due to 

the much weaker interactions of Pb
2+

 with Au surfaces compared to the Cu
+
-Au 

interactions. 

 

 

 

Figure 7.5. Extinction spectra of Au NPs obtained through overgrowth of Au ETHH NPs in the 

presence of various concentrations of CTAB and fixed Cu
2+

 concentrations: (A) [Cu
2+

] = 10 μM; 

(E) [Cu
2+

] = 100 μM. TEM images of faceted Au nanorods obtained through overgrowth of Au 

ETHH NPs under various conditions: (B) [Cu
2+

] = 10 μM, [CTAB] = 3 mM; (C) [Cu
2+

] = 10 μM, 

[CTAB] = 14 mM; (D) [Cu
2+

] = 10 μM, [CTAB] = 51 mM; (F) [Cu
2+

] = 100 μM, [CTAB] = 3 

mM; (G) [Cu
2+

] = 100 μM, [CTAB] = 14 mM; (H) [Cu
2+

] = 100 μM, [CTAB] = 51 mM. All TEM 

images share the scale bar in panel B. 
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    Among various foreign metal ion additives, Ag
+
 has been so far most widely used to 

guide the seed-mediated shape evolution of noble metal nanocrystals. Ag
+
 ions can be 

used in combination with appropriate surfactants to guide the growth of a series of high-

index and low-index faceting polyhedral NPs through selective surface passivation 

induced by underpotential deposition (UPD) of Ag.
15,77

 In contrast to those of Ag
+
, the 

roles of Cu
2+

 in seed-mediated nanocrystal growth have been much less explored. A 

similar mechanism involving UPD of Cu on Au seed surfaces has been proposed to 

interpret Cu
2+

-mediated shape evolution of metallic NPs.
78,79

 Although the existence of 

transient, localized Cu UPD layers on Au surfaces during nanorod overgrowth cannot be 

completely ruled out, the results of ex situ HAADF-STEM, XPS, and ζ-potential 

measurements provided clear evidence on the absence of metallic Cu UPD layers on the 

surfaces of the overgrown Au CCB, QCB, TCB, and EOH NPs. Therefore, the facet 

evolution of Au nanorods observed in this work should not be simply interpreted as a 

consequence of selective facet passivation guided by Cu UPD. An alternative mechanism 

involved in Cu
2+

 ion-guided growth of Au nanocrystals has been recently proposed, 

which is based on Cu
2+

-catalyzed oxidative etching of Au surface atoms.
56,57,80

 The 

reaction occurring in this oxidative etching process can be described using the following 

equation: 

 

    This Cu
2+

-catalyzed oxidative etching of Au occurs in strongly acidic environments 

and involves the participation of bromide anions (from CTAB), the oxygen dissolved in 

water, protons, and Cu
2+

 ions. The oxidative etching of Au nanorods resulted in decrease 

of both the aspect ratios and surface curvatures of the nanorods, giving rise to spectral 

4 Au0 + 8 Br- + O2 + 4 H+ 4 AuBr2
- + 2 H2O

Cu2+
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blue shift of the longitudinal plasmon resonances.
57

 When the Cu
2+

 ion-catalyzed 

oxidative etching dominated the nanorod overgrowth, the overgrowth rates greatly 

increased due to the etching-induced refreshment of NP surfaces, leading to the formation 

of thermodynamically stable {111}-faceting octahedral NPs.
56

 To achieve precise control 

over the nanorod facets, the oxidative etching of Au surfaces needs to be suppressed. We 

observed that Au ETHH NPs underwent a slow etching process when exposed to an 

aqueous solution containing 300 μM Cu
2+

, 14 mM CTAB, and 0.1 M HCl under ambient 

air at 60 °C, which was in line with previous observations on cylindrical Au nanorods.
57 

This etching process was further slowed down when the temperature dropped to 30 °C, 

the temperature at which the nanorod overgrowth was carried out. In addition, we found 

that the presence of excessive reducing agent, AA, in the overgrowth solution suppressed 

the Cu
2+

-catalyzed oxidative etching of Au. Although AA is a mild reducing agent, it can 

effectively suppress oxidation processes, such as galvanic replacement of metallic Ag 

with HAuCl4, when it is in great excess.
81

 Furthermore, the Cu
2+

 ion-catalyzed oxidative 

etching of Au requires low pH values below 1 and therefore high concentrations (∼0.1 

M) of strong acids, such as HCl or H2SO4, are needed to boost the oxidative 

etching.
56,57,80

 However, under our experimental conditions for nanorod overgrowth, no 

additional strong acid was added and the pH values of the overgrowth solutions were 

measured to be around 4. As a consequence, no etching of Au ETHH NPs was observed 

over time period up to 24 h. While the detailed mechanistic understanding of the roles of 

Cu
2+

 and CTAB requires further investigations, our results provided strong evidence that 

the facet evolution of Au nanorods under our experimental conditions was essentially 
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modulated by the competitive surface capping of various Au facets with Cu
+
 and CTAB 

rather than the UPD of Cu or Cu
2+

-catalyzed oxidative etching. 

 

Figure 7.6. SEM images of NPs obtained through overgrowth of Au ETHH NPs in the presence 

of 14 mM CTAB and various concentrations of Ag
+
 at: (A) 3 μM; (B) 7.5 μM; (C) 20 μM; (D) 

200 μM. The inset in each panel shows the geometric model for the NPs. All SEM images share 

the scale bar in panel A. (E) EDS spectrum of the NPs obtained in the presence of 20 μM Ag
+
. 

The inset shows the line-scan profile of elemental distribution overlapped with the SEM image of 

an individual NP. (F) Atomic ratio of Ag/Au obtained from EDS measurements as a function of 

the concentration of Ag
+
 in the overgrowth solution. (G) Experimental extinction spectra of 

colloidal Au NPs obtained through overgrowth of Au ETHH NPs in the presence of various Ag
+
 

concentrations as labeled in the figure. 
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    We further demonstrated the capability to fine-tune the particle aspect ratios using this 

facet-controlled nanorod overgrowth approach. The aspect ratios of Au ETHH NPs could 

be fine-tuned by exposing the preformed Au ETHH NPs to the same growth solution 

used for the seed-mediated growth of Au ETHH NPs. The aspect ratio of Au ETHH NPs 

progressively decreased as the volume of the growth solution increased while the {730} 

facets and the ETHH geometry were both well preserved. When the Cu
2+

/CTAB ratios 

were fixed at the optimal values for each geometry ([CTAB] was fixed at 14 mM and 

[Cu
2+

] were 0, 5, 70, and 300 μM for the ETOH, CCB, QCB, and EOH NPs, 

respectively), varying the amount of HAuCl4 allowed us to systematically tune the 

particle aspect ratios without changing the characteristic facets and morphological 

features of each geometry. Each faceted nanorod geometry exhibited its own 

characteristic aspect ratio-dependent extinction spectral features in terms of plasmon 

resonance wavelengths and detailed spectral line-shapes. For all the nanostructures, the 

transverse plasmon peaks became significantly more intense with respect to the 

longitudinal plasmon peaks as the particle aspect ratios decreased essentially due to the 

increase of the transverse dimensions of the NPs. 

    A similar facet and morphological evolution process was observed upon nanorod 

overgrowth when Ag
+
 ions were used instead of Cu

2+ 
to compete with CTAB. At a fixed 

CTAB concentration of 14 mM, the geometry of nanorods evolved from CCB (Figure 

7.6A) to TCB (Figure 7.6B) and then to EOH NPs (Figure 7.6C) as the Ag
+
 concentration 

progressively went up. Further increase of Ag
+
 concentration eventually led to the 

formation of octahedral NPs (Figure 7.6D). Apparently, low Ag
+
/CTAB ratios facilitated 

the formation of high-index {hkk} facets whereas high Ag
+
/CTAB ratios strongly 
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favored the formation of {111} facets. Analogous to Cu
+
 ions, Ag

+
 ions served as a 

surface capping competitor to CTAB in guiding the facet evolution of nanorods. 

However, the chemistry involved in the Ag
+
-mediated nanorod overgrowth was found to 

be strikingly different from that of the Cu
2+

-mediated overgrowth. During the Ag
+
-

mediated nanorod overgrowth, Ag
+
 was reduced to metallic Ag by AA and thus 

codeposition of Ag and Au occurred on the surfaces of the Au nanorod cores (Figure 

7.6E). In comparison to Cu, Ag has a reduction potential much closer to that of Au, 

enabling the codeposition of Ag and Au in the presence of AA and CTAB. In addition, 

the lattice mismatch between Ag and Au (0.34%) is much smaller than that between Cu 

and Au (11.4%), which favors the atomic interdiffusion and thus the formation of 

bimetallic alloy structures. The coreduction of Ag and Au under various conditions has 

been previously demonstrated to be a robust approach to the formation of bimetallic alloy 

NPs.
82-84

 Under our experimental conditions, the atomic ratios of Ag/Au were found to 

increase with the concentration of Ag
+
 in the overgrowth solutions (Figure 7.6F). As 

shown in Figure 7.6G, the structural evolution of the faceted nanorods introduced 

interesting modifications to the extinction spectral features. The surface concavity caused 

significant red-shifts of both the longitudinal and transverse plasmon resonances while 

the development of corner truncation blue-shifted and weakened the longitudinal plasmon 

peak, a similar trend as that observed in the cuprous ion-guided facet evolution. 

    Despite more than a decade of intensive investigation on the Ag
+
-assisted nanorod 

synthesis, the detailed roles of Ag
+
 in guiding the anisotropic growth of Au nanorods still 

remain controversial.
15-18

 Three plausible mechanisms
4,9,18,19 

have been proposed 

regarding the roles of Ag
+
 in controlling the nanorod aspect ratios: (1) the UPD of a 
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submonolayer quantity of metallic Ag on the longitudinal faces of Au nanorods; (2) the 

action of a CTAB-Ag
+
 complex as a facet-specific capping agent; and (3) the Ag

+
- and 

Br
-
-guided formation of rod-shaped CTAB micelles, which serve as a soft-template. 

Characterizing the locations of trace amount of Ag on the Au nanorod surfaces constitute 

the major challenge associated with the mechanistic studies. Recent studies using 

combined electron microscopy and advanced EDS revealed that the surface deposition of 

Ag exhibited no preference for a specific facet or axis of the Au nanorods while the 

dogbone-like nanostructures developed from nanorod overgrowth showed preferential Ag 

deposition on the ends and in the crevices.
18 

Although further investigations are needed to 

fully elucidate the synergistic effects of Ag
+
 and CTAB on the nanorod facet evolution, 

our results clearly show that the competitive surface capping of nanorods with Ag
+
 and 

CTAB provides a unique way to fine-tailor the facets of anisotropic Au-Ag bimetallic 

NPs. 

    The combination of fine-tailored surface structures and tunable plasmonic properties 

on the faceted Au nanorods provided a unique opportunity for us to quantitatively study 

the facet dependence of heterogeneous catalysis on Au nanorods using SERS as a time-

resolved spectroscopic tool. As recently demonstrated by our group
62,85,86 

and several 

other groups,
87-93

 using SERS to characterize the interfacial molecular transformations 

during heterogeneous catalysis has several unique advantages, such as real-time 

monitoring, noninvasive detection, high sensitivity, and detailed molecular finger-

printing capability. Here we focused on the catalytic hydrogenation of surface-adsorbed 

4-nitrothiophenol (4-NTP) by ammonia borane (AB) as a model reaction to gain 

quantitative insights on the relationship between atomic surface structures and intrinsic 
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catalytic activities of various Au facets. It has been shown that aromatic thiolated ligands, 

such as 4-NTP, can displace the halide-containing cationic surfactants and other 

physisorbed species on Au nanoparticle surfaces.
94,95

 The as-fabricated Au ETHH, 

ETOH, CCB, QCB, and EOH NPs first underwent a ligand exchange process through 

which self-assembled monolayers (SAMs) of 4-NTP were immobilized on the NP 

surfaces via the Au-thiol interactions to displace the surface-adsorbed CTAB and Cu(I) 

ions. The 4-NTP-coated NPs were then redispersed in water and the characteristic facets 

and geometric features of the NPs were both well-preserved after the ligand exchange 

process. We collected SERS spectra on colloidal NPs coated with 4-NTP SAMs at 785 

nm excitation. Although the 4-NTP molecules were distributed over the entire NP 

surfaces, the overall SERS signals were dominated by the signals from the molecules 

adsorbed on the end facets with negligible contribution from the molecules on the lateral 

side facets. This is because at 785 nm, the longitudinal plasmon resonances were more 

effectively excited and the field enhancements were much higher at the ends than on the 

lateral sides of the nanorods.
20,22,24,65

 We estimated the average Raman enhancement 

factors (EFs) of surface-adsorbed 4-NTP by comparing the SERS signals to normal 

Raman signals of 4-NTP based on the Raman mode at 1338 cm
-1

. The estimated Raman 

EFs were on the order of 10
6
 for the various faceted nanorod geometries, approaching 10

7
 

for Au ETHH NPs. 

    The catalytic hydrogenation reactions were initiated upon exposure of the 4-NTP-

coated NPs to 2 mM AB in 1 mM K2CO3 solution at room temperature. The metallic NPs 

efficiently catalyzed the dehydrogenation of surface-adsorbed AB to generate active 

hydrogen,
96

 which then drove the hydrogenation of surface-adsorbed 4-NTP.
65

 We used a 
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confocal Raman microscope with a laser focal plane ∼2 μm × 2 μm in size and an 

effective excitation volume of ∼1.0 × 10
-16 

m
3
 to collect the SERS spectra. Exposure of 

each diffusing colloidal NP to the excitation laser at relatively low power (10 mW) for 

short time periods (limited by the diffusion time) allowed us to effectively suppress 

plasmon-driven photoreduction of 4-NTP
97

 and the perturbation of reaction kinetics 

caused by photothermal effects.
62,85,86

 As schematically illustrated in Figure 7.7A, this 

catalytic hydrogenation reaction essentially involved two key steps. 4-NTP and 4-

aminothiolphenol (4-ATP) were the reactant and final product, respectively, and 4,4′-

dimercaptoazobenzene (DMAB) was identified as the transient intermediate. The detailed 

assignments of the peaks in SERS spectra
85,87,97,98 

are listed. Time-resolved SERS results 

(Figure 7.7B and 7.7C) clearly showed that the reaction rates decreased in the order of 

ETHH > CCB > ETOH > QCB > EOH NPs. It is worth mentioning that all the faceted 

nanorod structures were enclosed by facets larger than 5 nm in size. Therefore, the 

relative reaction rates well-reflected the characteristic catalytic activities of various facets 

because the edge and corner atoms at the boundaries between facets only accounted for 

negligibly small fractions of the total surface atoms.
99,100

 

    We used the Raman modes at 1338 cm
-1

 (the N-O stretching mode of 4-NTP), 1590 

cm
-1

 (the phenol ring mode of 4-ATP), and 1438 cm
-1

 (the N-N stretching mode of 

DMAB) to quantify the fractions of reactant (θR), product (θP), and intermediate (θI), 

respectively, as a function of reaction time (t). To obtain θR(t) values, the peak intensities 

of the 1338 cm
-1

 mode at particular time spots, I(t), were normalized against the initial 

peak intensities before the reactions started, I(t=0 s). To obtain θP(t) values, the peak 

intensities of the 1590 cm
-1

 mode at particular time spots were normalized against the 
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peak intensities after the reaction was completed, I(t=∞). This catalytic reaction followed 

pseudo-first-order kinetics because AB was in great excess with respected to the surface-

adsorbed 4-NTP. The pseudo-first-order rate constants for the first step, k1, were first 

obtained by performing least-squares curve fitting to the θR(t) trajectories (Figure 7.7D) 

using the following rate equation: 

tk

R
1e


                                                   (1), 

    The pseudo-first-order rate constants for the second step, k2, were then obtained by 

fitting the θP(t) trajectories using the following rate equation: 

12

tk

2

tk

1
P

kk

ekek 12







)(

1                   (2), 

θI(t) was finally calculated based on the curve-fitting results using the following equation: 

PRI  1                                            (3), 

The experimentally measured θI(t) were plotted after normalization of the maximum peak 

intensities of the 1438 cm
-1

 mode against the maximum θI values of the curve-fitting 

results. 

    As shown in Figure 7.7D and 7.7E, the three types of high-index facets were 

catalytically much more active than the low-index facets toward the catalytic 

hydrogenation of 4-NTP. The Au ETHH NPs enclosed by {730} facets exhibited the 

highest catalytic activities among the nanostructures investigated in this work, with k1 

approximately 500 times larger than that of the EOH NPs enclosed by the least active 

{111} facets (Figure 7.7E). On the EOH NPs, it took more than 90 min for the reaction to 

go to completion under the current experimental conditions. While both k1 and k2 were 

observed to be facet dependent, decreasing in the order of {730} > {511} > {221} > 
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{100} > {111}, k1 was much more sensitively dependent upon the facets than k2. 

Interestingly, the k2 values were always larger than k1 regardless of nanorod geometries, 

suggesting that the rate-limiting step was the conversion of 4-NTP to DMAB and the 

overall reaction kinetics were essentially determined by k1 rather than k2. The ratios of 

k1/k2, which were also facet-dependent, determined both the maximum fractions of 

DMAB, θI,max, and the reaction time at which the θI,max was achieved, tmax. As shown in 

the bottom panel of Figure 7.7D, θI,max decreased while tmax increased as k1/k2 went 

down. For ETOH, QCB, and EOH NPs, the fraction of DMAB (θI) remained very low 

throughout the entire reaction processes and the rates of product formation were 

dominated essentially only by k1 because k2 was far greater than k1 (k2 > 10k1). As a 

consequence, the overall kinetics could be further simplified as a one-step first order 

reaction and the θP trajectories could be well described by a single-exponential function: 

tk

P
1e1


                                                   (4) 

    The observed facet-dependent catalytic activities correlated well with the characteristic 

distributions of undercoordinated surface atoms on various facets (Figure 7.7F). The 

surface atoms on the low-index {100} and {111} facets are close-packed with 

coordination numbers of 8 and 9, respectively, and are thus catalytically less active than 

the high-index facets. The {730} facet possess 44% of its surface atoms with 

coordination number of 6, which served as highly active sites for the catalytic 

hydrogenation reaction. The {511} and {221} facets possess 50% and 33% 

undercoordinated surface atoms, respectively, with a coordination number of 7. The 

{511} facets were more active than the {221} facets largely due to the higher fraction of 

surface atoms with coordination number of 7. Our results provided clear experimental 
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evidence on the crucial roles of undercoordinated surface atoms in Au-based 

heterogeneous catalysis, which were originally proposed based on the results obtained 

from CO oxidation catalyzed by oxide-supported sub-5 nm Au NPs.
99,100

 The SERS-

based kinetic measurements on Au nanorods enclosed by well-defined facets allowed us 

to quantitatively correlate the intrinsic activities with the atomic-level surface structures 

of Au nanocatalysts with no complication from the synergy between the Au NPs and the 

high surface-area oxide supports. 

 

Figure 7.7. (A) Schematic illustration of the two-step hydrogenation process. (B) Two-

dimensional colored code intensity map of time-resolved SERS spectra collected from 4-NTP 

molecules adsorbed on the surfaces of Au ETHH NPs at different reaction times upon exposure to 

2 mM AB. (C) Representative SERS spectra collected at reaction times of 0, 12, and 48 s. (D) 

Fraction of reactant (θR) (top panel), product (θP) (middle panel), and intermediate (θI) (bottom 

panel) as a function of reaction time (t) during the reactions catalyzed by Au ETHH, CCB, 

ETOH, QCB, and EOH NPs. The error bars show the standard deviations obtained from 5 

experimental runs. The results of the least-squares fitting are shown as solid curves. (E) k1 values 

on Au ETHH, CCB, ETOH, QCB, and EOH NPs. (F) Fraction of surface atoms with various 

atomic coordination numbers for {730}, {511}, {221}, {100}, and {111} facets. 
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7.4 Conclusions 

In summary, we have developed a highly robust and versatile facet-controlled nanorod 

overgrowth approach with unique capabilities to selectively create an entire family of 

well-defined facets on the surfaces of single-crystalline Au nanorods, including high-

index {hk0} facets on ETHH NPs, high-index {hhk} facets on ETOH NPs, high-index 

{hkk} facets on CCB NPs, low-index {100} facets on QCB NPs, and low-index {111} 

facets on EOH NPs. Our success in precise facet control of Au nanorods essentially relies 

on the utilization of cuprous ions and CTAB as a unique pair of surface capping 

competitors to fine-control the facet evolution during nanorod overgrowth. This approach 

also allows for the fine-tuning of the particle aspect ratios while still retaining the 

characteristic surface structures and morphological features of each nanorod geometry. 

This work represents a significant advancement in nanorod synthesis and provides new 

mechanistic insights on the roles of foreign ions and surface-capping surfactants in 

guiding the facet evolution of anisotropic nanocrystals, thereby promoting the geometry 

control of anisotropic nanostructures toward an unprecedented level of precision and 

versatility. The faceted Au nanorods, which exhibit fine-tailored atomic level surface 

structures while still inheriting the plasmonic tunability of the conventional cylindrical 

Au nanorods, serve as a unique multifunctional nanomaterials system that allows us to 

quantitatively correlate the intrinsic catalytic activities with the atomic-level surface 

structures of Au nanocatalysts using SERS as a time-resolved plasmon-enhanced 

spectroscopic tool. 
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CHAPTER 8 

Intertwining Roles of Silver Ions, Surfactants, and Reducing Agents in Gold 

Nanorod Overgrowth: Pathway Switch between Silver Underpotential 

Deposition and Gold-Silver Codeposition 
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8.1 Introduction 

Recent advances in colloidal nanoparticle synthesis have greatly enhanced our 

capabilities of fine-tuning the optical, electronic, and catalytic properties of metallic 

nanoparticles through deliberate control over the particle shapes and compositions.
1-5

 

Seed-mediated nanocrystal growth, in particular, provides a highly robust and versatile 

approach to the precise geometry control of metallic nanoparticles under mild 

conditions.
5-13 

The seed-mediated structural evolution of nanocrystals is synergistically 

guided by a set of interplaying geometric, kinetic, and thermodynamic factors such as the 

crystallinity of seeds,
5,10,14 

the supersaturation of crystal growth units,
15

 the 

thermodynamic stabilities of various crystallographic facets,
16 

and the selective 

passivation of nanocrystal surfaces.
10 

An extensive library of anisotropic nanoparticle 

geometries, such as nanorods,
6,17-21 

nanoprisms,
22 

and a series of low-index and high-

index faceting nanopolyhedrons,
12,13,16,23-31 

have been experimentally realized through 

kinetically controlled seed-mediated nanocrystal growth processes with the aid of 

structure-directing surfactants and foreign ion additives. These synthetic protocols, 

however, have been developed and optimized in a largely empirical fashion, while 

detailed nanocrystal growth mechanisms often remained ambiguous until recently a 

coherent mechanistic understanding of shape-controlled growth of Au nanocrystals 

started to emerge in the literature.
32

 

    The geometric evolution of Au nanocrystals during seed-mediated growth is essentially 

governed by two primary pathways: kinetic control of nanocrystal growth and selective 

passivation of nanoparticle surfaces.
10,32

 Under the kinetic control pathway, fast 

nanocrystal growth facilitates the formation of kinetically favored high-index faceting 
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nanocrystals, such as {221}-faceting nanotrisoctahedrons,
10,33-35

 whereas slower 

nanocrystal growth generally results in thermodynamically more stable, low-index 

faceting nanoparticles such as nanocubes enclosed by {100} facets and nanooctahedrons 

enclosed by {111} facets.
10,32

 In contrast, selective passivation of nanoparticle surfaces 

by capping surfactants or foreign ions offers an alternative pathway that leads to the 

formation of exotic geometries bound entirely by the passivated facets.
10,27,31

 While these 

two pathways appear divergent at first glance, there is a strong synergy between them. 

The key components in the nanocrystal growth solutions, including the surfactants, the 

foreign ions, and the reducing agents, all play multiple intertwining roles in guiding the 

structural evolution of nanocrystals and may modulate the interswitch between multiple 

nanocrystal growth pathways. A particularly interesting phenomenon manifesting such 

mechanistic complexity is the underpotential deposition (UPD) of up to a monolayer of 

foreign metal adatoms on the Au nanoparticle surfaces during foreign ion-guided Au 

nanocrystal growth.
10,27,31,32,36-40

 The UPD adlayer not only selectively passivates various 

Au facets, but also fine-regulates the overall nanocrystal growth kinetics, allowing Au 

nanocrystals to evolve into a variety of low-index and high-index faceting geometries in a 

highly controllable manner. Under appropriate conditions, the foreign metal ions may 

also be coreduced with Au through seed-mediated electroless codeposition processes to 

form heterostructured or homogeneously alloyed multimetallic nanoparticles with further 

increased architectural and compositional complexity.
41-46

  

    Among various anisotropic Au nanostructures, single-crystalline cylindrical Au 

nanorods (NRs) have been of particular interests owing to their intriguing aspect ratio-

dependent plasmonic properties.
6,7,19,20

 The most popular protocols for NR synthesis 
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involve seed-mediated growth coguided by a foreign metal ion, Ag
+
, and halide-

containing cationic surfactants, such as cetyltrimethylammonium bromide (CTAB), in the 

presence of ascorbic acid (AA), which serves as a mild reducing agent.
6,17-19

 While the 

aspect ratios of Au NRs can be fine-tuned by simply varying the concentration of Ag
+
 

ions in the growth solution, the exact roles that Ag
+
 ions play in the symmetry-breaking 

of the isotropic seeds and the subsequent anisotropic NR growth still remain elusive and 

controversial.
36,47-50

 In striking contrast to the excellent control over NR aspect ratios, 

limited success has been achieved so far in the precise facet control of NRs using the 

seed-mediated growth method. The surface curvature and local facets of Au NRs may 

change drastically upon even slight variation of the ingredients in the NR growth 

solutions, and quantitative assignments of the crystallographic facets exposed on the 

highly curved NR surfaces have long been under intense debate.
17,51-56

 

    A unique way to further fine-tailor the crystallographic facets and expand the aspect 

ratio tuning range of Au NRs involves the shape-controlled overgrowth of preformed 

cylindrical NRs.
57-69

 In the absence of foreign metal ions, cylindrical Au NRs may 

selectively undergo tip overgrowth, isotropic overgrowth, and anisotropic overgrowth to 

evolve into peanut-shaped NRs, cuboidal NRs, and truncated nanooctahedrons, 

respectively, depending on the concentrations of CTAB in the overgrowth solutions.
60 

Recently, we further demonstrated that more rigorous control of Au NR facets with 

atomic level precision could be achieved using cuprous (Cu
+
) foreign ions and halide-

containing surfactants as unique pairs of surface capping competitors to maneuver the 

facet evolution during NR overgrowth.
68,69

 In comparison to Cu
+ 

ions, Ag
+ 

ions have been 

more widely used in combination with various surfactants to guide the morphology-
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controlled overgrowth of Au NRs. A large variety of NR-derived anisotropic geometries, 

such as nanodumbbells, starfruit-shaped NRs, dogbone-like NRs, concave nanocuboids, 

and arrow-headed NRs, have been obtained through Ag
+
- and CTAB-coguided NR 

overgrowth processes.
57,58,61,63-67

 However, it still remains a significant challenge to 

obtain a unified picture that rigorously interprets the interplay of multiple evolutionary 

pathways involved in the NR overgrowth processes. In this chapter, we endeavor to 

pinpoint the intertwining roles of Ag
+
 ions, surfactants, and reducing agents in directing 

the structural and compositional evolution during NR overgrowth with a primary focus 

on the effects of two interswitchable pathways, specifically Ag UPD and Au-Ag 

codeposition, on the geometries and compositions of the overgrown NRs. 

8.2 Experimental Section 

Nanorod Overgrowth. Single-crystalline cylindrical Au NRs were prepared following a 

previously published protocol
70

 with minor modifications. The NR overgrowth was 

conducted in the presence of Ag
+
, HAuCl4, CTAB, and AA at 30 °C under ambient air. 

The NR overgrowth solution was prepared by sequentially adding H2O, HAuCl4, AgNO3, 

and AA into a CTAB solution. After the solution was gently mixed for 30 s, the 

overgrowth of NRs was initiated by the introduction of 100 μL of the preformed 

cylindrical Au NRs (in 0.1 M CTAB). The reaction solution was gently mixed for 30 s 

immediately after the addition of Au NRs and then left undisturbed at 30 °C for 1 h. The 

obtained nanoparticles were then washed with H2O twice through 

centrifugation/redispersion cycles and finally redispersed in 200 μL of 20 mM CTAB. To 

investigate the effects of Ag
+
, CTAB, and AA, the overall concentrations of Ag

+
, CTAB, 

and AA in the NR overgrowth solutions were systematically varied, while the total 
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volume of the nanorod overgrowth solutions was always fixed at 5.0 mL. BDAC and 

CTAC were also used as an alternative surfactant instead of CTAB to compare the effects 

of different surfactants on the NR overgrowth. The effects of reducing agents were 

investigated by varying the concentration of AA in the overgrowth solutions or using 

other mild reducing agents such as HQ and HEPES. 

    Characterizations. The TEM images were obtained using a Hitachi H-8000 

transmission electron microscope operated at an accelerating voltage of 200 kV. All 

samples for TEM measurements were dispersed in water and drop-dried on 300 mesh 

Formvar/carbon-coated Cu grids. SEM and EDS measurements were performed using a 

Zeiss Ultraplus thermal field emission scanning electron microscope. The samples for 

SEM and EDS measurements were dispersed in water and drop-dried on silicon wafers. 

The atomic level structures of the nanoparticles were resolved by aberration-corrected 

HAADF-STEM using a JEOL 2100F 200 kV FEG-STEM/TEM microscopy equipped 

with a CEOS CS corrector on the illumination system. The samples for HAADF-STEM 

measurements were dispersed in water and drop-dried on 400 mesh Cu grids with 

ultrathin carbon support film (Electron Microscopy Science Inc.). The optical extinction 

spectra of the nanoparticles were measured on aqueous colloidal suspensions at room 

temperature using a Beckman Coulter Du 640 spectrophotometer. ζ-Potentials of 

colloidal nanoparticles were measured at room temperature using ZETASIZER 

nanoseries (Nano-ZS, Malvern). The samples for ζ−potential measurements were all 

freshly prepared, centrifuged, and redispersed in 10 mM CTAB (pH ∼ 7.8). XPS 

measurements were carried out using a Krato AXIS Ultra DLD XPS system equipped 

with a monochromatic Al Kα source. The samples for XPS measurements were all 
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freshly prepared and dried in vacuum before being loaded into the XPS chambers. SERS 

spectra were obtained on a Bayspec Nomadic confocal Raman microscopy built on an 

Olympus BX51 microscope equipped with a 785 nm continuous wave diode laser. CV 

measurements were performed in 0.1 M KNO3 electrolyte solution at room temperature. 

8.3 Results and Discussions 

Single-crystalline cylindrical Au NRs were prepared through a seed-mediated growth 

process in the presence of Ag
+
 ions and CTAB/oleate binary surfactant mixtures

70
 and 

were subsequently employed as the seeds for the post-fabrication NR overgrowth. As 

shown by the scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) images, the as-fabricated Au NRs were highly uniform and monodisperse with 

diameters of 21 ± 3 nm and lengths of 105 ± 5 nm. It was previously reported that Ag 

existed as either a UPD layer of Ag adatoms or arguably as a AgBr adlayer on the NR 

surfaces, which was further capped with a positively charged, self-assembled bilayer of 

CTAB.
17

 While the bulk composition of the NRs was dominated by Au as shown by the 

energy dispersive spectroscopy (EDS) results, both Ag and Br signals were well-resolved 

by X-ray photoelectron spectroscopy (XPS), clearly verifying the presence of both Ag 

and CTAB on the NR surfaces. Starting with these preformed cylindrical Au NRs, we 

performed detailed investigations on the structural and compositional transformations 

upon NR overgrowth as a function of three variables: Ag
+
 ions, capping surfactants, and 

reducing agents. 

8.3.1 Effects of Ag
+
 Ions.  

    We symmetrically varied the concentration of Ag
+
 ions while keeping HAuCl4 (Au 

precursor), CTAB, and AA at fixed concentrations of 200 μM, 20 mM, and 10 mM, 
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respectively. As schematically illustrated in Figure 8.1A, the cylindrical Au NRs 

transformed into a series of interesting NR-derived anisotropic geometries as the Ag
+
 

concentration in the overgrowth solution progressively increased. In the absence of Ag
+
 

ions, the Au NRs transformed into elongated trisoctahedral nanoparticles (ETOH NPs) 

(Figure 8.1B), which is in line with our previous observations.
69

 Detailed electron 

microscopy characterizations revealed that each ETOH NP was enclosed by four {110} 

lateral side facets and 24 high-index {221} facets at the two ends.
69

 The formation of the 

kinetically favored, high-index faceting ETOH NPs was a direct consequence of fast NR 

overgrowth at sufficiently high [AA]/[HAuCl4] ratios ([AA]/[HAuCl4] = 50 in this case). 

Overgrowth of quasi-spherical Au nanoparticles under similar conditions resulted in the 

formation of high-index faceting nanotrisoctahedrons each of which was enclosed by 24 

{221} facets.
34

 In the presence of Ag
+
 ions, strikingly different geometric transformations 

were observed upon NR overgrowth. As shown in Figure 8.1, panel C, surface concavity 

was developed on the NR surfaces at relatively low [Ag
+
]/[HAuCl4] ratios below 0.02, 

forming dog bone-like nanorods (DBLNRs) with eight sharp tips. Upon further increase 

of the [Ag
+
]/[HAuCl4] ratio, however, the surface indentation and tip sharpness of the 

DBLNRs both gradually decreased, while the transverse dimensions of the overgrown 

NRs progressively increased (Figure 8.1D,E), eventually leading to the formation of 

arrow-headed NRs (AHNRs) with two sharp tips, each of which was enclosed by four 

thermodynamically stable {111} facets (Figure 8.1F,G). Apparently, Ag
+
 ions played 

crucial roles in directing the shape evolution of NRs under the overgrowth conditions. 
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Figure 8.1. (A) Schematic illustration of geometric evolution during NR overgrowth in the 

presence of fixed concentrations of HAuCl4, AA, and CTAB but varying concentrations of Ag
+ 

ions. SEM and TEM (inset) images of the overgrown NRs obtained at various [Ag
+
]/[HAuCl4] 

ratios of (B) 0, (C) 0.02, (D) 0.05, (E) 0.07, (F) 0.50, and (G) 2.0. The concentrations of CTAB, 

HAuCl4, and AA were 20 mM, 200 μM, and 10 mM, respectively. (H) Ag/Au atomic ratios of 

the overgrown NRs obtained at various [Ag
+
]/[HAuCl4] ratios. The bulk and surface Ag/Au 

atomic ratios were quantified by EDS and XPS, respectively. (I) Surface atomic ratios of Br/(Au 

+ Ag) quantified by XPS and apparent ζ-potentials of the overgrown NRs obtained at various 

[Ag
+
]/[HAuCl4] ratios. The error bars in panels H and I represent the standard deviations of three 

samples fabricated under identical conditions. (J) Optical extinction spectra of the overgrown 

NRs obtained at various [Ag
+
]/[HAuCl4] ratios as labeled in the figure. 

 

    To further elucidate the exact roles of Ag
+
 ions, we used EDS and XPS to characterize 

the bulk and surface compositions of the overgrown NRs, respectively. Both EDS and 

XPS results showed the absence of Ag on the ETOH NPs, verifying that the formation of 



www.manaraa.com

 

228 

ETOH NPs was purely a CTAB-mediated, kinetically controlled process without the 

involvement of Ag
+
 foreign ions. At low [Ag

+
]/[HAuCl4] ratios below 0.07, the bulk 

compositions of the overgrowth NRs were essentially dominated by Au with Ag signals 

almost undetectable by EDS. However, strong Ag signals were clearly resolved in XPS, 

and the surface Ag/Au atomic ratios measured by XPS exhibited much higher values than 

the bulk Ag/Au atomic ratios obtained from EDS. The sample penetration depth of the 

XPS measurements under the current experimental conditions was calibrated to be ∼1 

nm, which roughly corresponded to five atomic layers from the outer surface of the 

nanoparticles. Therefore, a Ag/Au atomic ratio of ∼0.25 corresponded to a saturated 

monolayer coverage of Ag UPD adatoms on the Au nanoparticle surfaces. As the 

[Ag
+
]/[HAuCl4] ratio increased from 0.01 to 0.07, the surface Ag/Au atomic ratios 

(measured by XPS) progressively increased from ∼0.12 to ∼0.26, while the bulk Ag/Au 

atomic ratios (measured by EDS) remained below 0.03 (Figure 8.1H), well reflecting the 

transition of a submonolayer to a fully saturated monolayer of Ag UPD adatoms on the 

surfaces of the overgrown NRs. Both the EDS and XPS results strongly indicated that the 

transformation of cylindrical Au NRs into the DBLNRs was governed by a Ag UPD-

dominated overgrowth pathway. 

    As the [Ag
+
]/[HAuCl4] ratio further increased to above 0.07, Ag

+
 and HAuCl4 started 

to be coreduced by AA to form Au-Ag alloy shells surrounding the Au NR cores, 

resulting in the formation of Au-Ag bimetallic AHNRs. EDS and XPS results clearly 

verified the Au NR-core and Au−Ag alloy-shell heterostructure of the AHNRs. Much 

higher Ag content was detected by both EDS and XPS on the AHNRs than on the 

DBLNRs, and a sharp increase of both the bulk and surface Ag/Au atomic ratios was 
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observed over a narrow [Ag
+
]/[HAuCl4] window (Figure 8.1H). In the high 

[Ag
+
]/[HAuCl4] ratio regime, the NR overgrowth was dominated by Au-Ag electroless 

codeposition, a pathway fundamentally different from the Ag UPD. The Ag atoms in the 

AHNRs were intermixed with Au atoms far beyond the surface atomic layer to form alloy 

structures. We also performed angle-dependent XPS measurements to further contrast the 

compositional difference between DBLNRs and AHNRs. The maximal probe penetration 

depth (∼1 nm) was achieved at normal incidence, while the probe penetration depth 

decreased as the detector was shifted away from normal incidence with respect to the 

sample surfaces. The surface Ag/Au atomic ratios of DBLNRs progressively increased as 

the probe penetration depth decreased, whereas the AHNRs exhibited surface Ag/Au 

atomic ratios that were almost independent of the probe penetration depth. Meanwhile, 

both the DBLNRs and AHNRs exhibited surface Br/Au atomic ratios that progressively 

increased with decrease in probe penetration depth, verifying that the CTAB surfactant 

molecules existed on the surfaces of the overgrown NRs. The angle-dependent XPS 

results provided strong evidence that Ag UPD adatoms were present on the surface of 

DBLNRs, while an AHNR was composed of a Au NR core surrounded by a Ag-Au alloy 

shell. Therefore, DBLNRs can be considered as a product of Ag UPD-guided NR 

overgrowth, while the transformation of Au NRs into AHNRs was dominated by Ag-Au 

codeposition. More interestingly, the pathway interswitch between the Ag UPD and Ag-

Au codeposition can be modulated by simply tuning the [Ag
+
]/[HAuCl4] ratios with a 

threshold value around 0.07 for the pathway switch (Figure 8.1H).  

    Under all the experimental conditions mentioned above ([Ag
+
]/[HAuCl4] < 2), no 

precipitation of AgBr was observed during the NR overgrowth. However, when the 
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[Ag
+
]/[HAuCl4] ratio further increased to 4, insoluble AgBr started to form, which 

resulted in mixtures of AHNRs and irregularly shaped, micron-sized AgBr. To avoid the 

complication due to AgBr precipitation, the structural evolution during NR overgrowth at 

[Ag
+
]/[HAuCl4] ratio higher than 2 was not further explored. 

    We qualitatively assessed the surface packing density of CTAB on the overgrown NRs 

by plotting surface atomic ratio of Br/(Au+Ag) (quantified by XPS) as a function of the 

[Ag
+
]/[HAuCl4] ratio in the overgrowth solutions. As shown in Figure 8.1, panel I, the 

CTAB packing densities on the DBLNRs appeared higher than those on AHNRs. The 

XPS results also showed that the Br/(Au+Ag) ratio was independent of the Ag/ (Au+Ag) 

ratio of the DBLNRs, suggesting that the surface of a DBLNR was capping with a CTAB 

surfactant layer rather than a AgBr adlayer. However, XPS was incapable of further 

distinguishing the Ag(0) from Ag(I) species because of the spectral overlap between 

Ag(0) and Ag(I). To gain further insights into the nature of surface-deposited Ag, we 

correlated the XPS results with the nanoparticle surface charges characterized by ζ-

potential measurements. In our ζ-potential measurements, a commercial ζ-potentiometer 

was used to measure the free mobility and effective hydrodynamic sizes of the colloidal 

nanoparticles, which were then converted into apparent ζ-potentials using simple 

theoretical formulas approximating each particle as a hard sphere homogeneously coated 

with a charged thin layer. Although more accurate determination of ζ-potentials requires 

the incorporation of additional empirical or semi-empirical parameters, such as the 

geometric anisotropy and heterogeneous distribution of adsorbates on various facets,
71

 

into the theoretical formulas, the apparent ζ-potentials reported here allowed us to 

qualitatively compare the relative surface charges of the nanoparticles of various NR-like 
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geometries. Interestingly, the apparent ζ-potentials of the DBLNRs remained essentially 

unchanged regardless of the variation of the [Ag
+
]/[HAuCl4] ratios (Figure 8.1I). Both the 

XPS and ζ-potential results suggested that the surface packing density of CTAB on the 

overgrown DBLNRs was independent of the [Ag
+
]/[HAuCl4] ratios in the NR 

overgrowth solutions. When the Au-Ag codeposition dominated the NR overgrowth, 

however, the apparent ζ-potentials started to increase with the [Ag
+
]/[HAuCl4] ratios 

despite the decrease in the surface packing density of CTAB, suggesting that additional 

Ag
+
 ions may be physisorbed on the surfaces of AHNRs when the Ag

+
 concentration is 

sufficiently high. More quantitative assessment of Ag(0) and Ag(I) species on the 

nanoparticle surfaces, however, requires detailed investigations using advanced structural 

characterization techniques such as synchrotron Ag K-edge extended X-ray absorption 

fine-structure (EXAFS)
40

 and small-angle neutron scattering (SANS)
72

 measurements. 

    Complementary to the SEM and TEM measurements, the structural transformations of 

NRs upon their overgrowth can also be monitored using optical extinction spectroscopy 

owing to the geometry-dependent plasmonic characteristics of the nanoparticles (Figure 

8.1J). The cylindrical Au NRs displayed a strong longitudinal plasmon resonance at ∼860 

nm and a much weaker transverse plasmon resonance at ∼510 nm, respectively. In the 

low [Ag
+
]/[HAuCl4] ratio regime where Ag UPD dominated the NR overgrowth, both the 

longitudinal and transverse plasmon resonances red-shifted and became stronger as the 

Au NRs evolved into DBLNRs largely due to the formation of surface concavity. We 

also found that the transverse plasmon mode of DBLNRs split into two peaks, which is a 

spectral signature of NRs with surface indentations.
63,68

 As the degree of surface 

indentation of the DBLNRs decreased, both the longitudinal and transverse plasmon 
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peaks gradually blue-shifted accompanied by decrease in peak intensities. When the Au-

Ag codeposition started to dominate the NR overgrowth at higher [Ag
+
]/[HAuCl4] ratios, 

corner truncation of the DBLNRs led to further blue-shift and weakening of the 

longitudinal plasmon peak, while the transverse plasmon peak remained robust at 

essentially fixed wavelengths. The transverse plasmon peak became much stronger than 

the longitudinal plasmon peak when the NRs eventually evolved into AHNRs at 

sufficiently high [Ag
+
]/[HAuCl4] ratios. 

    We used high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) to further characterize the atomic-level structures of the DBLNRs and 

AHNRs (Figure 8.2). The relative orientation of each DBLNR or AHNR with respect to 

the electron beam was verified by the crystalline lattices in the high-resolution HAADF-

STEM images and the fast-Fourier transform (FFT) patterns of the images. Figure 8.2, 

panel A shows the geometric model and HAADF-STEM image of a single-crystalline 

DBLNR projected along the [001] zone axis. The surface indentation of the DBLNR was 

well reflected by the line-scan image intensity profiles (the image intensity was roughly 

proportional to the thickness of the specimen). Figure 8.2, panels B and C show the high-

resolution HAADFSTEM images of the regions i and ii labeled in Figure 8.2, panel A, 

respectively. Because of the small lattice mismatch between Au and Ag (<0.2%), only 

one set of face centered cubic lattices was resolved in the high resolution HAADF-STEM 

image. The concave surfaces of a DBLNR were essentially enclosed by various types of 

high-index facets whose Miller indices were determined by the local surface curvatures. 

Figure 8.2, panels D and E show the HAADF-STEM images and geometric models of 

individual AHNRs projected along the [001] and [011] zone axis, respectively. The 3D 



www.manaraa.com

 

233 

geometries of the AHNRs were qualitatively confirmed by the orientation-dependent 

line-scan intensity profiles. The (100) crystalline lattices were clearly resolved in the high 

resolution HAADF-STEM image when an AHNR was projected along the [001] zone 

axis (Figure 8.2F). The lateral side facets of an AHNR were dominated by low-index 

{100} facets, while the longitudinal tips of an AHNR were enclosed by low-index {111} 

facets. Under the Ag UPD pathway, the side facets were selectively passivated by the 

UPD adlayers, while the growth of corners was facilitated, resulting in the formation of 

high-index faceting DBLNRs with concave surfaces and increased longitudinal 

dimensions. In contrast, Ag-Au codeposition preferentially occurred on the lateral side 

facets to form thermodynamically more stable, low-index faceting AHNRs with 

significantly increased transverse dimensions. 
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Figure 8.2. (A) HAADF-STEM image and the corresponding geometric model of an individual 

Au DBLNR projected along the [001] zone axis, together with the intensity profiles along the line 

labeled in panel A. High-resolution HAADF-STEM images of (B) region i and (C) region ii 

labeled in panel A. The inset in panel C is the fast Fourier transform (FFT) pattern of the image. 

HAADF-STEM images and the corresponding geometric models of individual AHNRs projected 

along (D) [001] and (E) [011] zone axes. The intensity profiles along the lines labeled in each 

panel were also shown. (F) High-resolution HAADF-STEM images of a portion of an individual 

AHNR. The HAADF-STEM image of the entire AHNR and the specific region in the high 

resolution image are shown in the upright inset. The bottom right inset is the corresponding FFT 

pattern of the high-resolution HAADF-STEM image. 

 

8.3.2 Effects of Surface Capping Surfactants.  

    The pathway switch between Ag UPD and Au-Ag codeposition could also be 

maneuvered by varying the concentration of the CTAB surfactants while keeping Ag
+
, 

HAuCl4, and AA at fixed concentrations. Figure 8.3, panels A-F show the SEM and TEM 

images of the nanoparticles obtained upon NR overgrowth in the presence of 200 μM 

HAuCl4, 10 mM AA, 14 μM Ag
+
, and various concentrations of CTAB. At relatively low 

CTAB concentrations (e.g., [CTAB] = 10 mM), AHNRs were obtained. As the 

concentration of CTAB progressively increased, surface indentation and corner 

protrusion gradually emerged, eventually leading to the formation of DBLNRs with 

shape tips and highly indented surfaces at CTAB concentrations above 80 mM. The 

structural transition from AHNRs to DBLNRs was essentially caused by the pathway 

switch from Ag-Au codeposition to Ag UPD, which was further verified by EDS (Figure 

8.3G). As the concentration of CTAB increased, both the longitudinal and transverse 

plasmon resonances progressively red-shifted and became increasingly more intense 

(Figure 3H), well-reflecting the transition from AHNRs to DBLNRs with increasing 

degrees of surface indentation. Under the current NR overgrowth conditions, CTAB 

served as a surface-capping competitor to the Ag
+
 foreign ions, providing another key 

knob for the pathway interswitch. Therefore, it is the ratio of [Ag
+
]/[CTAB] rather than 
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the absolute concentrations of Ag
+
 and CTAB that modulates the pathway switch 

between Ag UPD and Ag-Au codeposition. 

    To gain more detailed insights into the effects of Ag UPD layers on the surface 

indentation of DBLNRs, we systematically varied the concentration of Ag
+
 ions in the 

NR overgrowth solutions while keeping CTAB at a sufficiently high concentration (150 

mM) such that the pathway switch from Ag UPD to Au-Ag codeposition was effectively 

suppressed. In the presence of 150 mM CTAB, the NR overgrowth was always 

dominated by the Ag UPD pathway when the [Ag
+
]/[CTAB] ratio was varied over a 

broad range from 0.1-0.75. The degree of surface indentation and the sharpness of the 

tips of the DBLNRs progressively decreased as the [Ag
+
]/[CTAB] ratio increased (Figure 

8.4A-D). While the Ag signals were very low in EDS, the surface Ag/Au atomic ratios 

were measured to be in the range of 0.2-0.25 by XPS for the DBLNRs with various 

degrees of surface indentation (Figure 8.4E), verifying the presence of a Ag UPD adlayer 

on the nanoparticle surfaces. The capability of tuning the surface indentation and tip 

sharpness of the DBLNRs, when combined with the fine-control over aspect ratios, 

enables the tuning of the plasmon resonance frequencies and extinction spectral line-

shapes of NRs with greater detail and precision. As shown in Figure 8.4, panel F, sharper 

tips and more significant surface indentation gave rise to larger spectral red-shifts of both 

the transverse and longitudinal plasmon resonances. 
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Figure 8.3. SEM and TEM (inset) images of overgrown NRs obtained in (A) 10 mM, (B) 20 

mM, (C) 30 mM, (D) 60 mM, (E) 80 mM, and (F) 120 mM CTAB. The Ag
+
, AA, and HAuCl4 

concentrations were kept at 14 μM, 10 mM, and 200 μM, respectively. (G) Ag/Au atomic ratios 

(quantified by EDS) of the overgrown NRs obtained at various CTAB concentrations. The error 

bars represent the standard deviations of three samples fabricated under identical conditions. (H) 

Optical extinction spectra of the overgrown NRs obtained in various concentrations of CTAB as 

labeled in the figure. 

 

 

    To further test the hypothesis that the pathway switch was maneuvered by the 

competition between Ag
+
 ions and capping surfactants, we used 

benzyldimethylhexadecylammonium chloride (BDAC) instead of CTAB as the capping 

surfactants to guide the NR overgrowth. At a [Ag
+
]/[HAuCl4] ratio of 0.05, AHNRs were 

obtained in the presence of 30 mM BDAC (Figure 8.5A), while DBLNRs were obtained 

in 30 mM CTAB under otherwise identical NR overgrowth conditions. Apparently, the 

substitution of CTAB with BDAC switched the NR overgrowth pathway from Ag UPD 
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to the Ag-Au codeposition. Such pathway switch could be interpreted as a consequence 

of the weaker interactions of BDAC than those of CTAB with Au surfaces.
10,73

 The 

relative binding affinities of CTAB and BDAC on Au surfaces were further verified by 

the surfactant exchange between CTAB and BDAC monitored by surface-enhanced 

Raman spectroscopy (SERS) measurements. In the presence of 30 mM BDAC, nanoscale 

roughness started to develop on the lateral side surfaces of the AHNRs as the 

[Ag
+
]/[HAuCl4] ratio increased, while the {111} facets at the tips were preserved (Figure 

8.5B-D), leading to the formation of a unique structure resembling momordica charantia, 

inspiring the name momordica charantia-like nanorods (MCLNRs) (Figure 8.5E,F). The 

EDS results clearly showed that each MCLNR was composed of a Au NR core and a Ag-

Au alloy shell. The Ag/Au atomic ratios obtained from EDS progressively went up to 

∼0.40 with the increase of the [Ag
+
]/[HAuCl4] ratios, indicating that the transformation 

of Au NRs into MCLNRs was dominated by Ag-Au electroless codeposition (Figure 

8.5G). As shown in Figure 8.5, panel H, the structural evolution from AHNRs to 

MCLNRs caused significant blue-shift and weakening of the longitudinal plasmon 

resonance largely due to the increased transverse dimensions and Ag content of the 

particles. 
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Figure 8.4. TEM images of overgrown NPs obtained in the presence of 150 mM CTAB at 

various [Ag
+
]/[HAuCl4] ratios of (A) 0.10, (B) 0.20, (C) 0.50, and (D) 0.75. The concentrations of 

HAuCl4 and AA were 200 μM and 10 mM, respectively. (E) Ag/Au atomic ratios determined by 

EDS and XPS for the overgrown NRs obtained at various [Ag
+
]/[HAuCl4] ratios. The error bars 

represent the standard deviations of three samples fabricated under identical conditions. (F) 

Optical extinction spectra of the overgrown NRs obtained in the presence of 150 mM CTAB and 

various [Ag
+
]/ [HAuCl4] ratios as labeled in the figure. 

 

 

    The morphological interconversions between MCLNRs and AHNRs could also be 

achieved through variation of the BDAC concentration while keeping Ag
+
, HAuCl4, and 

AA at fixed concentrations. As shown in Figure 8.6, panels A-D, the MCLNRs gradually 

became less rough on their lateral side surfaces as the concentration of BDAC increased, 

eventually transforming into AHNRs at sufficiently high BDAC concentrations. The 

Ag/Au atomic ratios of MCLNRs were significantly higher than those of the AHNRs, 

though the [Ag
+
]/[HAuCl4] ratio in the NR overgrowth solutions was kept the same 

(Figure 8.6E). During the geometric transition from MCLNRs to AHNRs, the 

longitudinal plasmon resonance progressively blue-shifted, and the peak width 
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significantly decreased as a consequence of decrease in aspect ratios, while the transverse 

plasmon resonance wavelength remained essentially unchanged (Figure 8.6F). 

 

 

Figure 8.5. SEM and TEM (inset) images of overgrown NRs obtained in the presence of 30 mM 

BDAC at various [Ag
+
]/[HAuCl4] ratios of (A) 0.05, (B) 0.20, (C) 0.50, and (D) 0.75. The 

concentrations of HAuCl4 and AA were fixed at 200 μM and 10 mM, respectively. (E) High-

magnification SEM image of Au@Ag-Au MCLNRs obtained at [Ag
+
]/[HAuCl4] ratio of 0.75. (F) 

Photograph of momordica charantias. (G) Ag/Au atomic ratios, determined by EDS, of NPs 

obtained at various [Ag
+
]/[HAuCl4] ratios. The error bars represent the standard deviations of 

three samples fabricated under identical conditions. (H) Optical extinction spectra of NPs 

obtained through NR overgrowth in the presence of 30 mM BDAC and various [Ag
+
]/[HAuCl4] 

ratios as labeled in the figure. 

  

    Both the cationic amphiphilic chain and the halide anion of the surfactant molecules 

play crucial roles in guiding the NR structural evolution. The surfactants interact with the 

nanoparticle surfaces primarily through metal-halide interactions. During surfactant-

guided, seed-mediated nanocrystal growth, the presence of additional halide anions may 

drastically modify the geometries of the resulting Au nanoparticles due to the metal-

halide interactions.
74-76

 However, we found that the halide anions alone without the 

surfactants were incapable of controlling the geometry of overgrown NRs. In the 
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presence of the halide-containing cationic surfactants, the Au(III) precursor is reduced to 

Au(I) by AA, which forms Au(I)-surfactant complexes that are soluble in water.
18 

Upon 

addition of Au NR seeds into the overgrowth solution, a surface-catalyzed electroless 

plating process occurs, through which Au(I) is further reduced to metallic Au on the 

surfaces of Au NRs.
18

 Without any surfactants, Au(III) was rapidly reduced to metallic 

Au, while Ag(I) was coreduced to metallic Ag in the presence of KBr or KCl even before 

the introduction of Au NR seeds, resulting in the formation of highly aggregated Au-Ag 

bimetallic nanoparticles. To further elucidate the roles of the halide anions in the 

surfactants, we substituted CTAB with cetyltrimethylammonium chloride (CTAC), a 

chloride-containing surfactant with exactly the same amphiphilic chain as that of CTAB, 

to guide the NR overgrowth under otherwise identical experimental conditions. It is 

found that substitution of 20 mM CTAB with 20 mM CTAC resulted in a morphological 

change from DBLNRs to AHNRs primarily because chloride anions have weaker 

interactions with Au than bromide anions and thus are less efficient to compete with Ag
+
 

ions. On the other hand, the packing density of the surfactants on the nanoparticle 

surfaces is intimately tied to the structures of the amphiphilic chains. Although both 

CTAC and BDAC contain the same anion, the cationic chain of BDAC is bulkier than 

that of CTAC due to the presence of benzene ring. As a result, substitution of 30 mM 

BDAC with 30 mM CTAC switched the morphology of the overgrown NRs from 

MCLNRs to AHNRs possibly due to denser packing of CTAC on the nanoparticle 

surfaces than that of BDAC. 



www.manaraa.com

 

241 

 

Figure 8.6. TEM images of overgrown NRs obtained in (A) 5 mM, (B) 10 mM, (C) 50 mM, and 

(D) 150 mM BDAC. The concentrations of Ag
+
, HAuCl4, and AA were fixed at 20 μM, 200 μM, 

and 10 mM, respectively. (E) Ag/Au atomic ratios, determined by EDS, of NPs obtained at 

various BDAC concentrations. The error bars represent the standard deviations of three samples 

fabricated under identical conditions. (F) Optical extinction spectra of the overgrown NRs 

obtained in the presence of various concentrations of BDAC as labeled in the figure. 

 

    We analyzed the detailed XPS spectral features of the Au 4f and Ag 3d peaks of the 

overgrown NRs of various geometries and compositions. On the bulk Ag foil, two well 

separated spin-orbital components were observed at 368.2 eV (Ag 3d5/2) and 374.2 eV 

(Ag 3d3/2), respectively, and weak loss features were also observed to the higher binding 

energy side of each spin-orbit component for Ag. The loss features, however, became 

undetectable on the Ag-containing overgrown NR samples due to the change of atomic 

coordination environment of Ag atoms upon the formation of either a Ag UPD layer or a 

Ag-Au alloy shell. While the Au 4f peaks only slightly shifted within ±0.1 eV, the Ag 3d 

peaks exhibited significantly more pronounced spectral down-shifts up to -0.5 eV upon 
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the formation of a Ag UPD layer or a Ag−Au alloy shell, which is in excellent agreement 

with previously reported XPS results on Ag UPD layer-coated Au nanoparticles
27 

and 

Au-Ag alloy nanoparticles.
77,78

 

8.3.3 Effects of Reducing Agents.  

    In addition to the interplay between Ag
+
 ions and surfactants, the reducing agents also 

played a key role in maneuvering pathway interswitch between Ag UPD and Ag-Au 

codeposition. To further investigate the effects of reducing agents, we fixed the 

concentrations of CTAB, AgNO3, and HAuCl4 at 20 mM, 100 μM, and 200 μM, 

respectively, while systematically varying the AA concentrations. At relatively high 

[AA]/[HAuCl4] ratios, the preferential codeposition of Ag and Au resulted in the 

formation of Au@Ag-Au AHNRs (Figure 8.7A). As the [AA]/[HAuCl4] ratios gradually 

decreased, and Ag UPD began to dominate the NR overgrowth process, giving rise to the 

formation of DBLNRs with truncated corners, which further evolved into DBLNRs with 

sharper tips and more significant surface indentation (Figures 8.7B-D). The evolution of 

Ag/Au atomic ratios (Figure 8.7E) and optical extinction spectral features (Figure 8.7F) 

provided additional evidence on the pathway switch from Ag-Au codeposition to Ag 

UPD as AA concentration decreased. This strongly indicated that fast NR overgrowth in 

the presence of high concentrations of AA favored the Au-Ag codeposition. The NR 

overgrowth was slowed down when decreasing the AA concentrations, which caused the 

pathway switch from Au-Ag codeposition to Ag UPD.  

    To better understand the effects of reducing agents, we also used other mild reducing 

agents, such as hydroquinone (HQ) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), to initiate the NR overgrowth. Because the reducing capabilities of both 
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HQ and HEPES are significantly weaker than those of AA,
79,80

 the NR overgrowth 

became much slower when using HQ and HEPES instead of AA under otherwise 

identical conditions. By keeping the molar ratio of reducing agents to HAuCl4 fixed at 50, 

AHNRs were obtained in the presence of AA, whereas the use of HQ and HEPES 

resulted in the formation of DBLNRs. Therefore, the NR overgrowth kinetics controlled 

by the reducing agents is also a key factor determining the pathway interswitch between 

Ag UPD and Au-Ag codeposition. 

 

Figure 8.7. SEM images of overgrown NRs obtained at various [AA]/[HAuCl4] ratios of (A) 100, 

(B) 10, (C) 2.5, and (D) 1.5. The concentrations of Ag
+
, CTAB, and HAuCl4 were kept at 100 

μM, 20 mM, and 200 μM, respectively. (E) Ag/Au atomic ratios (quantified by EDS) of the 

overgrown NRs obtained at various [AA]/[HAuCl4] ratios. The error bars represent the standard 

deviations of three samples fabricated under identical conditions. (F) Optical extinction spectra of 

the overgrown NRs obtained at various [AA]/[HAuCl4] ratios as labeled in the figure. 

 

    As summarized in the literature, the geometric evolution of Au nanocrystals during 

seed-mediated growth is primarily governed by two pathways: kinetic control and 

selective surface passivation.
32

 In absence of foreign metal ions, high-index faceting 

nanoparticles were typically the major products of fast nanocrystal growth processes, 
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while slow growth kinetics favored the formation of thermodynamically stable low-index 

faceting nanoparticles. In the presence of Ag
+
 foreign ions, the surfaces of Au 

nanoparticle were selectively passivated by Ag UPD adlayers, guiding the transformation 

of Au nanocrystals into a variety of high-index faceting geometries.
10,27

 Higher Ag
+
 

concentrations resulted in the formation of facets with higher-order Miller indices.
27

 In 

striking contrast to these previous observations, we found that slow NR overgrowth 

allowed the cylindrical Au NRs to transform into high-index faceting DBLNRs, whereas 

fast NR overgrowth led to the formation of low-index faceting AHNRs. Apparently, the 

geometric evolution of NRs observed in this work should not be simply interpreted as the 

consequence of either a kinetically controlled or a surface passivation-dominated 

nanocrystal growth process. It was essentially the pathway interswitch between Ag UPD 

and Au-Ag codeposition that underpinned the intriguing structural evolution of 

cylindrical Au NRs into various Au-Ag bimetallic nanoparticle geometries. 

8.3.4 Structural Stability of Ag-Au Bimetallic AHNRs and MCLNRs.  

    Ag nanostructures exhibit highly desired plasmonic properties for widespread 

applications; however, they are chemically much less stable than the other noble metal 

counterparts such as Au, Pt, and Pd nanoparticles. An effective way to stabilize the Ag 

nanoparticles while retaining their key plasmonic characteristics is to homogeneously 

alloy elemental Ag with elemental Au in nanocrystals. As previously demonstrated in 

various Ag-Au alloy nanoparticles, the interdiffusion of Ag atoms into Au matrix through 

alloying greatly enhanced the stability of Ag elements, and higher oxidation potentials 

were required to trigger the oxidation of Ag when it was alloyed.
65,66,81

 While 

nanostructures similar to the AHNRs can be fabricated through NR overgrowth under 
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various conditions,
37,65,66,82

 there has long been lack of consensus on the exact 

compositions of the AHNRs. An AHNR was initially identified to be a Au NR core 

coated with either a Ag UPD adlayer
37

 or a monometallic Ag nanoshell.
82

 However, more 

recent studies revealed that each AHNR was essentially a heteronanostructure composed 

of a Au-core and a Ag-Au alloy shell,
65,66

 which well interpreted the structural robustness 

of the AHNRs against chemical etching.
65,66

 As demonstrated in this work, the Au-Ag 

codeposition-controlled NR overgrowth provided a unique way to electrolessly deposit 

Ag-Au alloy shells on Au NR cores. 

    We systematically compared the structural changes of three representative Ag-Au 

bimetallic heteronanostructures, Au@Ag core-shell nanocuboids (NCBs), Au@Au-Ag 

core-shell AHNRs, and Au@Au-Ag core-shell MCLNRs, upon oxidative etching by 

Fe
3+

, sulfidation with Na2S, and galvanic replacement with HAuCl4 (Figure 8.8). The 

monometallic Ag shells were completely etched upon exposure of the NCBs to Fe
3+

, 

whereas both the AHNRs and MCLNRs were extremely robust against oxidative etching 

(Figure 8B,G,L). The relative resistivities of various nanoparticles toward oxidative 

etching were further evaluated by electrochemical measurements. A strong anodic peak 

was observed at ∼0.56 V versus SCE in the cyclic voltamogram (CV) of Au@Ag core-

shell NCBs, which was attributed to the oxidation of the metallic Ag shells. In contrast, 

much weaker anodic peaks were observed for both AHNRs and MCLNRs at significantly 

more positive potentials, indicating that alloying of Ag with Au shifted the Ag oxidation 

potential to much higher values and the oxidation of Ag also became kinetically 

inhibited. The structural robustness of Ag-Au alloys was further confirmed by the 

sulfidation reactions with Na2S. While the Au@Ag core-shell NCBs completely 
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transformed into Au@Ag2S core-shell nanoparticles upon sulfidation (Figure 8.8C), no 

significant morphological or compositional change was observed on AHNRs and 

MCLNRs (Figure 8.8H,M). Upon the exposure of the NCBs to HAuCl4, fast galvanic 

replacement reactions occurred, which gave rise to the formation of Au@Ag-Au 

yolk−shell particles with interior cavities
83,84 

(Figure 8.8D). For AHNRs, the sharpness of 

the tips and edges decreased, while all the facet were well-preserved because the 

undercoordinated corner and edge atoms were less stable than the surface atoms on the 

low-index facets of the AHNRs (Figure 8.8I). The MCLNRs appeared to be more 

reactive than AHNRs as evident by the formation of nanoscale porosity upon galvanic 

replacement (Figure 8.8N) mostly likely due to the fact that the Ag/Au atomic ratios of 

MCLNRs were higher than those of AHNRs and BDAC provided less effective surface 

protection in comparison to CTAB. 

    All the above-mentioned structural transformation processes could be tracked by 

optical extinction spectroscopy. As shown in Figure 8.8, panel E, Au@Ag core−shell 

NCBs exhibited four distinct plasmon resonance bands, which could be assigned to the 

longitudinal dipole, transverse dipole, transverse octupole, and even high-order multipole 

resonances, respectively.
85-88

 Upon complete etching of the Ag shells with Fe(NO3)3, only 

the spectral features of pure Au NR cores were preserved. Interestingly, significant 

plasmon damping was observed upon the sulfidation of the Ag shells into Ag2S shells due 

to the spectral overlap between interband transitions of Ag2S with the plasmon 

resonances of Au.
89

 The galvanic replacement of NCBs gave rise to significant red-shift 

and broadening of both the transverse and longitudinal plasmon band upon the formation 

of the yolk-shell structures, which was in line with previous observations.
83,84

 For 
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AHNRs and MCLNRs, no obvious spectral changes were observed due to the structural 

robustness of these two structures against the oxidative etching, sulfidation, and galvanic 

replacement treatments (Figure 8.8J,O). 

 

Figure 8.8. (A) SEM and TEM (inset) images of Au@Ag core-shell NCBs. TEM images of 

Au@Ag core-shell NCBs after (B) oxidative etching by Fe
3+

, (C) sulfidation with Na2S, and (D) 

galvanic replacement with HAuCl4. (E) Optical extinction spectra of the NPs shown in panels A-

D. TEM images of (F) AHNRs, (G) AHNRs after oxidative etching by Fe
3+

, (H) AHNRs after 

sulfidation with Na2S, and (I) AHNRs after galvanic replacement with HAuCl4. (J) Optical 

extinction spectra of the NPs shown in panels F-I. TEM images of (K) MCLNRs, (L) MCLNRs 

after oxidative etching by Fe
3+

, (M) MCLNRs after sulfidation with Na2S, and (N) MCLNRs after 

galvanic replacement with HAuCl4. The inset of panel N shows a high-magnification TEM of one 

particle indicated by an arrow. (O) Optical extinction spectra of the NPs shown in panels K-N. 

 

 

8.4 Conclusions 

This work highlights the intertwining roles of Ag
+
 foreign ions, surface-capping 

surfactants, and reducing agents that underpin the intriguing geometric and compositional 

evolution of single-crystalline Au NRs upon their overgrowth. The interplay of Ag
+
 ions, 

surfactants, and reducing agents modulates the switch between two underlying NR 
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overgrowth pathways, Ag UPD and Au-Ag electroless codeposition. The interswitch 

between the two pathways allows cylindrical Au NRs to selectively evolve into a variety 

of NR-derived anisotropic geometries with interesting structural, compositional, and 

plasmonic characteristics. The selective surface passivation of Au NRs by Ag UPD 

adlayers leads to the transformation of cylindrical Au NRs into DBLNRs with concave 

surfaces enclosed by high-index facets, whereas the Au-Ag codeposition-dominated NR 

overgrowth processes result in the formation of low-index faceting AHNRs and 

MCLNRs with Au-Ag alloy shell structures. The homogeneous alloying of Ag with Au in 

the AHNRs and MCLNRs greatly enhances the stability of the Ag elements in the 

particles, which makes the AHNRs and MCLNRs remarkably more resistive to oxidative 

etching, sulfidation, and galvanic replacement than their heterostructured Au-Ag core-

shell counterparts. The new insights gained from this work provide important information 

that may guide the rational design and development of new synthetic approaches to 

architecturally more sophisticated metallic nanostructures, further enhancing our 

capabilities to fine-tune the optical, electronic, and catalytic properties of metallic 

nanoparticles through more deliberate and precise control over the particle geometries 

and compositions. 
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CHAPTER 9 

Insights on Plasmon-Driven Oxidative Coupling of Thiophenol-Derivates: 

Evidence on Steady-State Active Oxygen Species
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9.1 Introduction 

Plasmonics is an emerging field that has profound impacts on energy storage and 

conversion, sub-wavelength light manipulation, plasmon-enhanced spectroscopic studies, 

photothermal cancer therapy, and ultrasensitive biomolecular sensing.
1-7

 The excitation of 

collective oscillations of the surface electrons on metallic thin films or nanostructures is 

known as surface plasmon resonance (SPR). Surface plasmons can either be propagating, 

for example on the surface of metallic thin film, or localized, for example on the surface 

of a metallic nanostructure.
1
 It has been recently observed that the surface plasmons 

supported by metallic nanostructures play a key role in guiding photo-chemical reactions, 

such as photochromic reactions,
8
 photopolymerization,

9
 oxidative dimerization of 4-

aminothiophenol (4-ATP),
10,11

 and reductive dimerization of 4-nitrothiophenol (4-

NTP).
12

 Moreover, some important catalytic reactions, such as ethylene epoxidation,
13-15

 

dissociation of H2,
16

 styrene hydrogenation,
17

 and generation of H2 via water-splitting,
5
 

were also found to be either induced or enhanced by the plasmon-driven hot carriers 

injection into the surface molecular adsorbates upon exposure to light excitation. The 

mechanisms of plasmon-driven photoreactions, however, still remain unclear and under 

intense debate.
6,18,19

 Therefore, it is imperative to gain quantitative new insights into the 

reaction kinetics and underlying pathways of these plasmon-driven photoreactions to 

fully understand the obstacles that might limit the wide applications of plasmonic 

nanostructures as high-performance photocatalysts.  

In Recent years, the peculiar role of active molecular O2 in plasmonic heterogeneous 

photocatalysis has been proposed and investigated in some important catalytic oxidation 

reactions, such as, ethylene epoxidation,
4,13-15

 CO oxidation,
13

 NH3 oxidation,
13

 and 



www.manaraa.com

 

259 

oxidative dimerization of 4-ATP.
10,11,20,21

 Particularly, Linic and co-workers
4
 

demonstrated that plasmonic silver nanostructures with superior visible light absorption 

and scattering properties, can utilize concurrently photons and thermal energy to drive 

catalytic oxidation reactions at drastically lower temperatures comparing to those 

associated with conventional thermal processes. More importantly, they also found that 

energetic hot electrons, formed via the decay of surface plasmon resonance on 

illuminated silver nanoparticles, are transferred from the silver to adsorbed molecular O2, 

allowing for activation of the O-O bond for oxidation of surface molecular adsorbates, for 

example, a commercially important epoxidation of ethylene to form ethylene oxide.
13

 A 

steady-state reaction kinetics model was also proposed to support their experimental 

findings, that is, the steady-state rate of O2 dissociation on plasmonic Ag nanostructures 

were measured as a function of temperature and illumination intensity under their 

experimental conditions.
22

 Their work strongly impacted and stimulated the field of 

plasmonic photocatalysis, allowing one to better understand the underlying mechanisms 

of plasmonic photocatalysis, as well as the unique role of active molecular O2 species in 

oxidative photocatalysis. Inspired by the above work, interesting work on studying the 

plasmon-driven photocatalytic reactions were continually reported to further unravel the 

real face of plasmonic photocatalysis.
6,21,23-29

 

Our enthusiasm for plasmon-driven oxidative coupling of thiophenol-derivates stems 

from the unique combination of exceptional important industrial catalytic application 

with their intense, ultrasensitive, and finger-printing molecular Raman scattering signal 

when adsorbed on the surface of plasmonic metallic nanostructures. Taking the plasmon-

driven oxidative coupling of 4-ATP as a model example.
10,11,30

 The plasmon-driven 
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oxidative coupling of 4-ATP during the SERS measurement was first experimentally 

demonstrated by Huang and co-authors in 2010, unraveling an interesting scientific 

question of SERS on distinguishing between chemical enhancement mechanism and 

photochemical transformation.
10

 The complicated mechanisms of this reaction were 

further explored in next a few years both experimentally and theoretically,
11,12,27,29,31-34

 in 

which the effects of surroundings, especially the role of active molecular O2 were 

proposed.
20,21

 As schematically illustrated in Figure 9.1, we proposed a two-step reaction 

pathway to show how molecular O2 was activated upon light excitation based on our 

understandings of previously published reports.
10,20,21,29

 The first step is that hot electron-

hole pairs are generated on the surface of metallic nanostructures via surface plasmon 

resonance decay upon light excitation. Secondly, surface physisorbed molecular O2 was 

activated by the injection of energetic hot electrons into the lowest unoccupied molecular 

orbital (LUMO) of physisorbed molecular O2, following by driving the oxidative 

coupling of 4-ATP into 4,4’-dimercaptoazobenzene (DMAB). While suitable energetic 

gap between the energy of hot electrons and LUMO of physisorbed molecular O2 

facilitates the hot electrons injection processes, it was found that the injection of hot 

electrons into LUMO of 4-ATP is unable to realize due to the large energetic gap, as 

shown in Figure 9.1. Therefore, it was reasonable that the molecular O2 species are firstly 

activated upon receiving the hot electrons, then the active molecular O2 will transfer the 

electrons to surface-adsorbed 4-ATP and induce the oxidative coupling into the formation 

of azobenzene compound. While the effect of O2 species in this hot electrons driven 

oxidative coupling photoreaction were clearly explained,
20,21

 it remains significant more 

challenging to elucidate the detailed mechanisms and reaction kinetics. A couple of key 



www.manaraa.com

 

261 

questions concerning about the detailed mechanisms and reaction kinetics are still less 

explored and poorly understood: (1) What is the rate-limiting step and the reaction 

kinetics model? (2) What is the hot electron injection pathway: Landau damping or 

chemical interface damping? (3) What is the correlation between near electromagnetic 

field enhancement and reaction kinetics? (4) The entangled role of photothermal/thermal 

effect? (5) The molecular structure effect of 4-ATP on this reaction? 

 

Figure 9.1. Schematic illustration of plasmon-driven activation of molecular oxygen species 

toward oxidative coupling of 4-ATP. 1
st
 Step: The formation of hot electron-hole pairs induced 

by the surface plasmon resonance decay under light excitation. 2
nd

 Step: Physisorbed oxygen 

molecules were activated by hot electron injection, following by driving the oxidative coupling of 

4-ATP. 

 

In this chapter, we chose the plasmon-driven oxidative coupling of 4-ATP as a model 

reaction to explore those challenging questions, that is, investigate the plasmonic and 

molecular effects on photoreaction kinetics and yield, using time-resolved SERS as an 

ultrasensitive spectroscopic tool with unique molecular finger-printing capabilities. A 
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unique three-dimensional hierarchical nanostructure composed of a SiO2 bead decorated 

with Ag nanocubes (SiO2@Ag nanocubes) was used as a plasmonically addressable 

substrate for SERS measurement. The time-resolved SERS measurement on one-particle-

at-a-time enables us to quantitatively analyze the reaction kinetics of this photoreaction 

via building statistically distributions over a large amount of reaction trajectories. We 

further demonstrate that the reaction kinetics and yields of plasmon-driven oxidative 

coupling of thiophenol-derivates were sensitively dependent on the local electromagnetic 

field enhancement, surrounding accessible amount of oxygen species, molecular structure 

of thiophenol-derivates, thermal annealing, and photothermal processes. Moreover, a 

steady-state reaction kinetics model was proposed, that is, active molecular oxygen 

species is at steady state, to explain and support our experimental findings on the reaction 

kinetics as a function of laser power, concentration of oxygen gas, thiophenol-derivates 

with different molecular structures, and thermal/photothermal annealing. In addition, a 

concept of “pre-activating” of thiophenol-derivates was proposed to understand the 

reason why the reaction yield was varying when different reaction condition was 

employed.  

9.2 Experimental Section 

Chemicals and Materials. Ethylene glycol (EG) was obtained from VWR International. 

Poly(vinylpyrrolidone) (PVP58 with Mw~58000), and 4-aminothiophenol (C6H7NS, 4-

ATP, 97%) were all obtained from Alfa Aesar. Silver trifluoroacetate (CF3CO Ag, ≥ 

99.99%), sodium hydrosulfide hydrate (NaHS·xH2O), hydrochloric acid (HCl, 37% in 

water), poly(4-vinylpyridine) (PVP, Mw~60,000), poly(diallyldimethylammonium 

chloride) (PDDA, 20%, w/w in water, Mw=200,000-350,000), 4-
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(dimethylamino)thiophenol (C8H11NS, 4-DMATP), and 4-Acetamidothiophenol 

(C8H9NOS, 4-AATP, 95%) were all purchased from Sigma-Aldrich. Silica beads (SiO2) 

was obtained from nanoComposix. Hydrogen peroxide (H2O2, 30%), sulfuric acid 

(H2SO4, 96.10%), and ethanol (200 proof) were purchased from Fisher Scientific. 

Acetone was purchased from Honeywell. All reagents were used as received without 

further purification. Ultrapure water (18.2 MΩ resistivity, Barnstead  asyPure II 7138) 

was used for all experiments. Silicon wafers were obtained from University Wafers. 

    Synthesis of Ag Nanocubes. Ag nanocubes were synthesized following a previous 

protocol with minor modification.
35

 In a typical procedure, 20 mL of EG was added into 

a 100 mL flask and preheated for 40 min under magnetic stir in an oil bath set to 150 °C. 

Other reagents dissolved in EG were sequentially added into the flask using a pipette. 

0.25 mL of NaHS solution (3 mM) was first added, and after 2 min 1.5 mL of HCl (3 

mM) was added, followed by the addition of 5.0 mL of PVP58 (150 mg/mL). After 

another 2 min, 1.5 mL of CF3COOAg solution (282 mM) was added. During the entire 

process, the flask was capped with a glass stopper except during the addition of reagents. 

The Ag nanocubes of ~ 30 nm edge lengths were obtained by quenching the reaction with 

an ice-water bath when the suspension had reached a brown color with a well-defined 

localized surface plasmon resonance peak at around 415 nm. After centrifugation and 

wash with acetone once and water twice, the Ag nanocubes were redispersed in 2 mL of 

EG for further use. 

    Synthesis of SiO2@Ag Nanocubes Core-Satellite Particles. SiO2@Ag nanocubes 

hybrid particles were prepared via a layer-by-layer assembly approach.
36

 A colloidal 

suspension of SiO2 beads (9.8 mg/mL water) was added to 1 mL of PDDA solution (1%). 
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After sonication for 30 min, the suspension was collected by centrifugation and washed 

three times with pure water. 0.1 mL of the as-prepared Ag nanocubes was then added to 

the SiO2/PDDA nanocomposites under mechanical stirring for 1 h. The final product was 

centrifuged and then redispersed in pure water. During this process, Ag nanocubes were 

attached to the surface of the SiO2/PDDA nanocomposites through electrostatic 

interactions. Then the products were removed from the solution by centrifugation. This 

process was repeated multiple times until the color of added Ag nanocubes no longer 

changed, indicating a saturating coverage of Ag nanocubes on the PDDA-functionalized 

SiO2 beads.  

    Time-Resolved Single-Particle SERS Measurements. Sub-monolayer films of 

isolated SiO2@Ag nanocubes hybrid particles were prepared by immobilizing the 

particles onto PVP (polyvinylpyridine)-functionalized silicon substrates.
37

 In a typical 

procedure, silicon substrates were cleaned in a piranha solution (sulfuric acid : hydrogen 

peroxide, 7:3) for 15 min, and then immersed in a 1.0 % wt. of PVP ethanolic solution for 

24 h. The silicon substrates were thoroughly rinsed with ethanol, dried with N2 gas before 

use. SiO2@Ag hybrid particles were incubated in 4-ATP ethanolic solution for overnight, 

and then washed with ethanol and water. Then the silicon substrate were immersed in an 

aqueous solution of SiO2@Ag hybrid particles for 1 h. The silicon substrates were 

thoroughly rinsed with ethanol and dried with N2 gas after they were removed from the 

solution of SiO2@Ag hybrid particles.  

    Time-resolved SERS spectra were obtained on a Bayspec Nomadic
TM

 Raman 

microscopy built on an Olympus BX51 reflected optical system under 785 nm laser 

e citation in the confocal mode (focal area of 2 μm diameter). A 50× dark field objective 
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(NA=0.5, WD=10.6 mm, Olympus LMPLFLN-BD) was used for both Raman signal 

collection and dark field scattering imaging. The laser beam was focused on one particle 

each time for Raman spectrum collection. In a typical procedure, the laser power focused 

on the samples was measured to be 0.45 mW and the spectrum acquisition time was 2 s 

under  condition. For the laser power-dependant experiments, we tested the samples 

under various laser powers. The gas atmosphere experiment were conducted by using 

pure oxygen gas, nitrogen gas, and their combination gas flow. The pre-thermal 

annealing experiments were carried out by incubating the SiO2@Ag hybrid particles 

(sealed silicon substrates into a plastic tube) into water bath of 90 
o
C for 60 min. And 

then, the samples were measured after cooling down to room temperature. Normal 

Raman spectra were obtained on solid thin film of 4-ATP, 4-DMATP, and 4-AATP on 

silicon substrate, respectively. 

    Characterizations. The TEM images were obtained using a Hitachi H-8000 

transmission electron microscope operated at an accelerating voltage of 200 kV. All 

samples for TEM measurements were dispersed in water and drop-dried on 300 mesh 

Formvar/carbon-coated Cu grids. SEM and EDS measurements were performed using a 

Zeiss Ultraplus thermal field emission scanning electron microscope. The samples for 

SEM and EDS measurements were dispersed in water and drop-dried on silicon wafers. 

The optical extinction spectra of the nanoparticles were measured on aqueous colloidal 

suspensions at room temperature using a Beckman Coulter Du 640 spectrophotometer. ζ-

Potentials of colloidal nanoparticles were measured at room temperature using 

ZETASIZER nanoseries (Nano-ZS, Malvern). Raman spectra were obtained on a 
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Bayspec Nomadic
TM

 Raman microscopy built on an Olympus BX51 microscope 

equipped with a 785 nm CW diode laser. 

    Reaction Kinetics and Percentage Analysis. To quantitatively analyze the kinetic 

data, we used the ratio between the SERS intensities of 1440 cm
-1

 Raman mode (N=N 

stretching mode of DMAB) and 1078 cm
-1

 Raman mode (C-S stretching mode of both 4-

ATP and DMAB) as being representative of product grow kinetics, which can be 

described as: Y=I1440(experiment)/I1078(experiment). Because the C-S stretching mode during the 

photoreaction process actually included two part of contributions: one is from 4-ATP, 

another one is from DMAB, so it is very difficult for us to separate them from the 

experimental Raman spectra (1078 cm
-1

 for 4-ATP, 1072 cm
-1

 for DMAB). To address 

this problem, we calculated the ratio between I1078 of 4-ATP (in nitrogen gas) and I1072 of 

DMAB (4-ATP in oxygen gas) under 785 nm laser of same laser power of 0.90 mW. The 

results can be marked as X=I1078(ATP)/I1072(DMAB), and then we were able to obtain the 

values of X for three different molecules: X4-ATP=0.40±0.02, X4-DMATP=0.24±0.02, X4-

AATP=0.75±0.03. The variable X values for different molecule is probably due to their 

significant difference in Raman scattering cross-sections. 

    We further calculated the value of I1440/I1078 in pure DMAB, which are available from 

our experimental data and also previously published reports,
10

 in which the value was 

determined to be I1440/I1078 (DMAB) =1.07±0.05. By taking into account the above 

results, we were able to calculate the fraction of product DMAB (θDMAB) using the 

following equations:  
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    We experimentally collected the Y values from time resolved SERS spectra during the 

reaction process, then the fraction of product DMAB (θDMAB) can be calculated using the 

above equations. We further plotted the fraction of product DMAB (θDMAB) verse the 

reaction time (t) for each individual reaction trajectory (one trajectory on one particle at 

one time). The rate constant (k) and reaction percentage (θt=∞) for each individual 

trajectory can be obtained by fitting the reaction trajectory using the following rate 

equation: 

)1( kt

tDMAB e   
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Then we plotted the rate constant (k) and reaction percentage (θt=∞) versus the initial peak 

intensities at 1078 cm
-1

 (C-S stretching mode of 4-ATP) on the excitation of 785 nm laser 

with various laser powers. 

9.3 Results and Discussions 

A layer-by-layer (LBL) assembly approach was developed for the fabrication of the 

SiO2@Ag nanocubes core-satellites hybrid nanostructure. As schematically illustrated in 

Figure 9.2A, the SiO2@Ag nanocubes hybrid particles were prepared through a stepwise 

LBL process. SiO2 beads of uniform size (~ 1 ± 0.1 μm) are used as the core on which Ag 

nanocubes (~ 30 ± 3.2  nm), enclosed exclusively by 6 low-index {100} facets,
35

 are 

assembled electrostatically. The surfaces of the initial SiO2 beads, which are terminated 

by carboxyl group, are negatively charged at neutral and basic pHs. A thin layer of 

polydiallyldimethylammonium chloride (PDDA) is then adsorbed onto the SiO2 surface 

to generate a positively charged particle surface. Since the Ag nanocubes are negatively 

charged, they can be attached onto the PDDA-functionalized SiO2 beads through 

electrostatic interactions. The mechanism of this LBL assembly process can be clearly 

seen from the evolution of the ζ-potentials. We further used a combination of scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive 

spectroscopy (EDS), and UV-Vis spectroscopy to fully characterize the SiO2@Ag 

nanocubes hybrid particles. As shown in Figure 9.2B, the SEM images clearly show that 

each individual SiO2 bead was almost fully packed by monolayer or up to several layers 

of Ag nanocubes. EDS-elemental mapping images of individual SiO2@Ag nanocubes 

hybrid particle further demonstrated the 3D core-satellites hybrid nanostructure (Figure 

9.2C). Close-packing of Ag nanocubes with ultra small interparticle gaps on the surface 
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of SiO2 bead were clearly observed in the high-magnification TEM images (Figure 9.2D), 

showing our capability of producing high density of “hot-spots” on individual bead for 

single particle SERS measurement. The strong SERS signal is also essentially relied on 

the optical properties of the assembled Ag nanocubes, including not only the enhanced 

plasmonic coupling, but also the specific extinction peak and range. Figure 9.2E shows 

the optical extinction spectra of SiO2 beads, Ag nanocubes, and SiO2@Ag nanocubes 

hybrid particle. While no obvious extinction peak were observed for SiO2 beads, Ag 

nanocubes exhibited a strong plasmonic peak located at ~415 nm and a tiny peak at ~354 

nm, which is in line with previous report.
35

 Large red shifts and significant broadening of 

plasmon bands were observed when Ag nanocubes were assembled onto the surface of 

SiO2 beads. The strong optical extinction in the visible and near IR range allows us to use 

SiO2@Ag nanocubes hybrid particle as a robust SERS substrate at 785 nm laser 

excitation, as well as a potential plasmonic photocatalyst under visible light irradiation. 

The plasmon coupling between the neighboring Ag nanocubes leads to the formation of 

plasmon “hot-spots” in the interparticle gaps where the local electromagnetic fields are 

drastically enhanced upon plasmonic excitation in the near-IR.
1
 This LBL self assembly 

approach allows us to fine-control the Ag nanocube coverage on each SiO2 bead, 

providing a unique way to tune the density, size, and intensity of the plasmon “hot-spots” 

on the particle surfaces. Overall, this method provides a robust way to fabricate uniform 

3D core-satellites nanostructures with extremely strong plasmonic properties that are 

highly desirable for SERS and plasmonic photocatalysis. 
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Figure 9.2. (A) Schematic illustration of the fabrication of SiO2/Ag nanocubes hybrid structures. 

(B) SEM image of SiO2/Ag nanocubes hybrid particles. (C) SEM image of an individual SiO2/Ag 

nanocubes hybrid particle and the corresponding elemental mapping images of Ag-L, O-K, and 

Si-K. (D) High-magnification TEM image of the assembled Ag nanocubes on the surface of SiO2 

bead, which was magnified from the TEM image of an individual SiO2/Ag nanocubes hybrid 

particle in the inset. (E) Experimental extinction spectra of SiO2 beads, Ag nanocubes, and 

SiO2/Ag nanocubes hybrid particles. 

 

 

    We used time-resolved SERS to monitor the plasmon-driven oxidative coupling of 4-

ATP into DMAB that are adsorbed on the surface of SiO2@Ag nanocubes hybrid particle. 

To form a self-assembled monolayer of 4-ATP on the nanoparticle surfaces, SiO2@Ag 

nanocubes hybrid particles were first immersed in 4-ATP solution, then separated from 

the mixture by centrifugation, and finally dried on silicon substrates for SERS 

measurements. Well-dispersed sub-monolayer of SiO2@Ag nanocubes particle were 

observed on the surface of silicon substrate, which is used for building the experimental 

setup for ambient single-particle SERS measurement at room temperature. The confocal 
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Raman microscope setup with a laser focal plane ∼2 μm × 2 μm in size and an effective 

excitation volume of ∼1.0 × 10
–16

 m
3
, when combined with the sub-monolayer particle 

substrate geometry, allows us to collect SERS trajectories one-particle-at-a-time and 

subsequently build statistics on the reaction kinetics by analyzing the ensemble of large 

numbers of trajectories. The oxidative photoreaction was initiated upon exposure of the 

4-ATP-coated SiO2@Ag particle to 785 nm laser in ambient air at room temperature. As 

schematically illustrated in Figure 9.3A, 4-ATP are firstly oxidized and then formed 

azobenzene dimers on the Ag surface, named as DMAB. Figure 9.3B,C show SERS 

spectra of 4-ATP monolayer molecules adsorbed on individual SiO2@Ag hybrid particle 

at various reaction times upon the excitation of 785 nm laser of 0.45 mW. The Raman 

bands at 1078, and 1595 cm
-1

 mode are assigned to the reactant (4-ATP), and the 

characteristic Raman bands at 1072, 1142, 1390, 1440, and 1575 cm
-1

 are assigned to the 

newly forming product (DMAB).
10,21

 Once the photoreaction started, the intensities of 

1595 cm
-1

 Raman bands of 4-ATP were observed to decrease progressively with the 

concomitant emergence of new bands corresponding to the N-N stretching modes of 

DMAB at 1390 and 1440 cm
-1

. Meanwhile, the C-S stretching mode of 4-ATP at 1078 

cm
-1

 gradually downshifted to 1072 cm
-1

 (C-S stretching mode of DMAB) with the 

concomitant significant enhanced of Raman intensities which might due to the large 

difference of Raman scattering cross section between 4-ATP and DMAB.
10,21,29 

The ratios between Raman modes at 1440 cm
-1

 (N-N stretching mode of DMAB) and 

1078 cm
-1

 (C-S stretching mode of 4-ATP and DMAB) modes were used as being 

representative of product grow kinetics to quantify the fraction of DMAB (θDMAB), as a 

function of reaction time (t). As shown in Figure 9.3D, we plotted the trajectories of 
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θDMAB as a function of reaction time (t) under 785 nm laser of 0.45 mW. This 

photoreaction kinetics followed first order kinetics very well when single exponential 

reaction kinetics equation was used to fit the kinetic curves. The first order rate constant k 

were obtained by performing least-squares curve fitting to the θDMAB(t) trajectories using 

the following rate equation: 

)1( kt

tDMAB e                     (1), 

The reaction percentage, marked as θt=∞, can be also obtained from the curve-fitting, 

showing the variable reaction percentages from different individual reaction trajectories. 

We then systematically collected the time-resolved SERS spectra on 10 different 

individual particles under same condition to build the statistical distribution, as shown in 

Figure 9.3E. Variable rate constant (k) and reaction percentage (θt=∞) from the curve 

fitting on each θDMAB(t) trajectories were obtained under same experimental conditions, 

enabling us to build the reliable statistical analysis in consideration of the deviation of the 

coverage of Ag nanocubes and 4-ATP molecules on different SiO2@Ag nanocubes 

particles. Because of the excellent fitting of experimental trajectories using single 

exponential kinetic equation, we proposed that the active molecular O2 is at steady state 

and the activation of 4-ATP is the rate-limiting step in comparison to the dimerization of 

two 4-ATP molecules into one DMAB molecule in this photoreaction. To further clarify 

that, we firstly expressed this reaction as a two-step photochemical reaction:                   

1) 




 22 OO
1

1ad

k

k
hv  

2)  1/2DMAB*TIATP4O2 
 fastk

2     (TI*: Transient Intermediate) 
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The first step is the injection of energetic hot electrons from Ag to adsorbed molecular 

O2 on light excitation, which is a ultrafast step, typically at ~fs time level,
19

 so we used k1 

to define the formation kinetics of active molecular O2. On the other hand, we assumed 

the first step is reversible, which means the active molecular O2 might transfer electrons 

back to Ag in some cases, so k-1 was used to define the decay kinetics of active molecular 

O2. Because we proposed that active molecular O2 is at steady state, so the value of k1/k-1 

and concentration of active molecular O2 are constants when the experimental conditions 

are fixed, such as, laser power, the near electromagnetic field enhancement, and 

concentration of surrounding molecular O2 (gas phase). The second step is the oxidative 

coupling of 4-ATP induced by surface active molecular O2, which is much slower than 

the first step because multiple molecular bond breaking and forming are involved in this 

complicated molecular dimerization. In addition, both previous reports
10,12,33

 and our 

time-resolved SERS data demonstrated that the second step can be monitored by time-

resolved SERS measurement, which is obviously at ~ms to ~s time level, strongly 

indicating that the second step is the rate-limiting step. We were able to identify and track 

the reactant, intermediates, and product during the photoreaction process using SERS as 

an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-

printing capabilities. While unknown transient intermediates (TI*) might be involved 

during the second step, it won’t have any effect on the reaction kinetics because no clear 

and stable transient intermediate can be observed during our time-resolved SERS 

measurement, indicating the lifetime of transient intermediate might be too short to be 

detected under our experimental conditions. Therefore, we used k2 to reveal the reaction 

kinetics of oxidative coupling of 4-ATP, which can be described as first order reaction 
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model because the concentration of active molecular O2 is a constant at steady state and 

the activation of 4-ATP is the rate-limiting step. 

 

Figure 9.3. (A) Schematic illustration of plasmon-driven oxidative coupling of 4-ATP adsorbed 

on the surfaces of Ag nanocubes under 785 nm laser excitation. (B) Two-dimensional colored 

code intensity map of time-resolved SERS spectra collected from 4-ATP molecules adsorbed on 

the surfaces of Ag nanocubes at different reaction times upon exposure to 785 nm laser. (C) 

Representative SERS spectra collected at reaction times of 0, 4, 20, and 60 s. The 1440 cm
-1

 

Raman band was highlighted for showing the evolution process of SERS spectral line-shape as a 

function of time. (D-E) A trajectory (D), and all trajectories (E) of fraction of product (θDMAB) as 

a function of reaction time (t) under 785 nm laser of 0.45 mW excitation. The acquisition time for 

each spectra was 2 s. The results of least-squares curve fitting are shown as solid curve in panel D. 

 

According the two-step photoreaction model and the above discussions, the kinetics 

model of this reaction can be mathematically described as following:  
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Because the active molecular O2 is at steady state (ss), so:  0
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The concentration of active molecular O2 at steady state can be obtained via calculation 

and also according to the relationship between k1, k-1 , and k2, k1 >> k2, k-1 >> k2, so: 
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Then the formation kinetics of DMAB can be expressed as:  
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Then we correlated this rate constant equation with our experimental kinetics data to 

obtain the equation of experimentally defined rate constant k, more details about the 

experimental kinetics analysis were discussed in Supporting Information and will be also 

discussed later. The rate constant k we obtained from experimental trajectory fitting can 

be described as equation (8), and then we can obtain k via inputting k of equation (8) into 

the equation (7):  

][
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    According to the equation (9), the experimentally defined rate constant k was affected 

by a couple of variables, such as, k1, k-1, [O2
ad

], and k2. This as-discussed reaction model 

is based on our initial proposal that active molecular O2 is at steady state, so we will be 

able to further demonstrate our idea by providing more experimental evidence to test this 

reaction kinetic model later on. Therefore, we aim to use the plasmon-driven oxidative 

coupling of thiophenol-derivates as model reactions to explore the effects of near 

electromagnetic field enhancement (k1), concentration of surrounding O2 gas molecules 

([O2
ad

]), molecular structure of ATP (k2), thermal annealing (k2), and photothermal 

processes (k2), on the plasmon-driven photoreaction kinetics and yield. 

We systematically investigated the effect of laser power on this photoreaction without 

modifying other experimental conditions. Increasing the laser power means that the 

density of photons will be increased in per unit area, which will significantly improve the 

concentration of the active molecular O2 because the probability in forming active 

molecular O2 is fixed when the energy of incident light is unchanging. The increase in 

laser power will also give rise to the modulation of local electromagnetic field 

enhancement, expressed as E/E0, which is because of the correlation between laser power 

P and local electromagnetic field E is P∞ƐE
2
. Thus, when laser power is changing, the 

synergy between variable density of incident photons and tunable local electromagnetic 

field enhancement will dramatically affect the photoreaction kinetics via modulating the 

rate constant k1 for the formation of active molecular O2. We performed the time-resolved 

SERS measurements under excitation at a series of different laser power to build the 
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correlation between the excitation laser power and reaction kinetics and yield. Figure 

9.4A,B show plots of rate constant (k) and reaction yield (θt=∞) as a function of the initial 

Raman peak intensities at 1078 cm
-1

 of 4-ATP (I1078) on the excitation of 785 nm laser 

with various laser powers of 0.21, 0.32, 0.45, 0.56, and 0.90 mW. To better address the 

underlying meaning of the as-plotted figures (Figure 9.4A,B), we plotted the ensemble-

averaged Raman peak intensities at 1078 cm
-1

 of 4-ATP (I1078) as a function of laser 

power square, as shown in the inset of Figure 9.4C. Interestingly, well-fitted linear 

relationship between I1078 and laser power square was observed, when combined with the 

linear relationship between laser power and (E/E0)
2
, further demonstrating that the 

correlation between I1078 and near field enhancement E/E0 is that, I1078∞ (E/E0)
4
. Thus, we 

tactfully employed the initial Raman peak intensities of 4-ATP (I1078) to quantify the near 

field enhancement E/E0 instead of laser power, clearly showing the correlation between 

rate constant (k) and near field enhancement (E/E0) (Figure 9.4A). 

Remarkably, we observed very good linear relationship between k and I1078 at 

relatively low laser power, and the super linear deviation start to dominate at relatively 

high laser power, as shown in Figure 9.4A. As previously demonstrated, the Raman peak 

intensities is proportional to the fourth power of near field enhancement ((E/E0)
4
), that is, 

I1078∞(E/E0)
4
. Therefore, linear correlation between k and I1078 from our experimental 

results strongly indicating that the relationship between rate constant (k) and near field 

enhancement (E/E0)
4
 is k∞(E/E0)

4
. The as-demonstrated well-fitted linear correlation 

between k and (E/E0)
4
 provide us an unique opportunity to explore the mechanism of 

plasmonic hot electron injection pathway that involved in this photoreaction. Two main 

mechanisms on plasmonic hot electron excitation were widely known currently: indirect, 
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and direct hot electron injection.
19,28,38

 The indirect process, which is also known as 

Landau damping, that is, the energetic hot electrons formed by plasmonic decay generate 

an wide energy distribution within the metal nanostructure, then hot electrons with 

suitable energetic gap can scatter into nearby adsorbate molecular orbitals. On the other 

hand, the direct process is known as chemical interface damping, during which the hot 

electrons are directly injected into unoccupied molecular orbitals of nearby adsorbate 

with suitable energetic gaps. A key difference between this two mechanisms is the 

correlation between rate constant k and near field enhancement E/E0, which will allow us 

to experimentally distinguish these two mechanisms though the underlying mechanisms 

might be much more complicated. k∞(E/E0)
4 

is found to be
  

Landau damping, and 

k∞(E/E0)
2 

is verified as chemical interface damping due to their different photon 

absorption and scattering processes. Therefore, while the mechanism of the hot electron 

injection process on excited plasmonic nanostructures are still unclear and poorly 

understood, our experimental results strongly demonstrated that this photoreaction is 

driven by Landau damping rather than chemical interface damping because direct 

chemical interface damping typically show the linear correlation between rate constant (k) 

and (E/E0)
2
. In addition, we also proposed that the super linear deviation of k from linear 

relationship might due to the significant enhanced photothermal effect at relatively high 

laser power, which will be discussed in great details later.  

On the other hand, the reaction yield (θt=∞) increases at first beginning and then 

reaches at an equilibrium when laser power increases to be around 0.56 mW, as shown in 

Figure 9.4B. While tunable photochemical transformation from 4-ATP to DMAB under 

different laser power excitation condition has been previously observed,
39

 the reason why 
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the photoreaction yield is laser power-dependent is still unclear because the laser power 

can only modify the density of incident photons rather than the energy of incident 

photons. Based on our reaction model, changing laser power will just affect the reaction 

kinetics except for there are other side effects from changing laser power, such as 

enhanced photothermal effect. Very recently, Takeyasu and co-authors reported that a 

threshold value of laser power was observed for the photoreaction of 4-ATP to be 

initiated, which is in line with our experimental findings partially, however, none of 

detailed mechanism were further discussed.
40

 Our understanding on this question is that 

the laser power dependent photothermal effect will induce the local heating near the 

surrounding of the adsorbed molecular 4-ATP, and further pre-activate 4-ATP toward 

accepting hot electrons and then oxidation coupling. Thus, more and more adsorbed 

molecular 4-ATP can overcome the energy barrier and be pre-activated by photothermal 

effect as the laser power increase, resulting in the increase of reaction yield. More 

evidence on pre-activating of adsorbed molecular 4-ATP by thermal and photothermal 

effect will be discussed later. Moreover, we also demonstrated that photochemical 

transformation from 4-ATP to DMAB is irreversible via tuning the laser power during 

the photoreaction. While all the peak intensities decreased when the laser power is 

decreasing during the photoreaction process, almost identical line shape of SERS spectra 

were observed before and after changing laser power, indicating the irreversible 

photoreaction under our current experimental conditions, which also agrees with 

previously published reports.
40
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Figure 9.4. Effect of laser power on plasmon-driven oxidative coupling of 4-ATP. (A-B) Plots of 

(A) rate constant (k), and (B) reaction yield (θt=∞) versus the initial SERS peak intensities at 1078 

cm
-1

 (4-ATP) on the excitation of 785 nm laser with various laser power of 0.21, 0.32, 0.45, 0.56, 

and 0.90 mW. Inset: plots of the ensemble averaged initial SERS peak intensities at 1078 cm
-1

 (4-

ATP) as a function of laser power square on the excitation of 785 nm laser with various laser 

power of 0.21, 0.32, 0.45, 0.56, and 0.90 mW. The results of linear fitting are shown as solid 

curves in panel A and the inset. 

 

We correlated the laser power experiment with the rate constant equation according to 

the proposed reaction kinetics model. Basically, the near electromagnetic field 

enhancement is modulated by changing the laser power, which will also affect the 

amount of active molecular O2 at steady state. Therefore, the laser power experiment 

provides us an unique opportunity to modulate the activation of surface molecular O2, in 

which k1 is modulated. Other ways to modulate the near field enhancement includes 
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varying the coverage of Ag nanocubes on the SiO2 surfaces, that is, tuning the 

interparticle gaps between Ag nanocubes, and so on. Therefore, tuning the near 

electromagnetic field enhancement represents an unique way to tune the kinetics of 

plasmon-driven oxidative coupling reaction via modulating the concentration of active 

molecular O2 at steady state. 

 

Figure 9.5. Effect of concentration of oxygen gas on plasmon-driven oxidative coupling of 4-

ATP. (A) Schematic illustration of the roles of oxygen species during plasmon-driven oxidative 

coupling of 4-ATP at 785 nm laser excitation. (B)  raction of product (θDMAB) as a function of 

reaction time (t) under 785 nm laser of 0.45 mW in the presence of varying gas atmosphere: 0%, 

5%, 20%, and 100% of oxygen gas. The acquisition time for each time-resolved SERS spectra 

was 2 s. The results of least-squares fitting are shown as solid curves in panel B. (C-D) 

Comparison of rate constant (k) and reaction yield (θt=∞) among in the presence of different 

volume ratios of oxygen gas. 

 

Another way to modulate the concentration of steady-state active molecular O2 is to 

vary the concentration of O2 gas in the surrounding of reaction according to the rate 

constant equation. As schematically illustrating in Figure 9.5A, O2 in gas phase will 
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affect the photoreaction via firstly adsorbing onto the surface of Ag nanocubes, and then 

being activated by the injection of hot electrons, followed by oxidizing the 4-ATP to 

form DMAB. While the concentration of adsorbed molecular O2 in the rate constant 

equation is different from the concentration of O2 gas in our experiments, the reaction 

kinetics model are still applicable because the adsorption of O2 onto the surface of Ag 

nanocubes is a very fast step comparing to the photoreaction process under our current 

experimental conditions, and the corresponding adsorption kinetics can be ignored in this 

case. Therefore, we used the gas flow system with variable O2 concentrations to 

investigate the effect of O2 on this photoreaction. As shown in Figure 9.5B-D, both the 

rate constant k and reaction yield θt=∞ increase as the concentration of O2 gas increases. 

The change of k, responding to the variable O2 concentration, can be explained using the 

proposed rate constant equation: varying the concentration of O2 gas will change the 

concentration of active molecular O2  at steady state, and further affect the rate constant k. 

On the other hand, the increase in reaction yield θt=∞ can be explained using the concept 

of pre-activating of adsorbed molecular 4-ATP: higher concentration of O2 gas will 

facilitate the activation of adsorbed molecular 4-ATP toward acceptance of hot electrons. 

Tiny DMAB were also observed when the concentration of O2 gas was 0%, which might 

be attributed to the surface pre-adsorbed O2 species that were not totally removed before 

the photoreaction was initiated.
21

 More importantly, the reaction trajectories under 

different concentration of O2 gas was also well-fitted by using the first order rate equation, 

strongly supporting our first order reaction kinetics model. While the essential role of O2 

in this reaction has been previously demonstrated,
20,21

 our experimental findings provide 
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more quantitative and strong evidence on the peculiar role of steady state active 

molecular O2 in this plasmon-driven oxidative coupling reaction of 4-ATP. 

 

Figure 9.6. Effect of molecular structure on plasmon-driven oxidative coupling of thiophenol-

derivates. (A) Schematic illustration of the plasmon-driven oxidative coupling of thiophenol-

derivates at 785 nm laser excitation. (B) SERS spectra of 4-ATP, 4-DMATP, and 4-AATP before 

and after the oxidative coupling reaction under 785 nm laser of 0.90 mW excitation. The spectra 

acquisition time was 1 s for 4-ATP, and 2 s for 4-DMATP and 4-AATP, respectively. (C) 

Comparison of rate constant (k) and reaction yield (θt=∞) among different molecules as marked in 

the figure under 785 nm laser of 0.90 mW excitation. (D-E) Plots of (D) rate constant (k), and (E) 

reaction yield (θt=∞) versus the initial peak intensities at 1082 cm
-1

 (4-DMATP) on the excitation 

of 785 nm laser with various laser power of 0.32, 0.56, 0.90, 1.40, and 2.60 mW. (F-G) Plots of 

(F) rate constant (k), and (G) reaction yield (θt=∞) versus the initial peak intensities at 1075 cm
-1

 

(4-AATP) on the excitation of 785 nm laser with various laser power of 0.56, 0.90, 2.00, 2.60, 

and 5.00 mW. The results of linear fitting are shown as solid curves. 
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We further investigated the effect of molecular strucutre on the plasmon-driven 

oxidative coupling of thiophenol-derivates (4-ATP is one of the examples). As 

schematically illustrating in Figure 9.6A, thiophenol-derivates with two different 

molecular group (marked as R1 and R2) that attached to the N atom might undergo 

plasmon-driven oxidative coupling to form DMAB on the surface of Ag nanocubes upon 

exposure to 785 nm laser. We chose three thiophenol-derivates with various R1 and R2, 

includes 4-ATP (R1: H, and R2: H), 4-(dimethylamino)thiophenol (4-DMATP, R1: CH3, 

and R2: CH3),  4-Acetamidothiophenol (4-AATP, R1: H, and R2: COCH3), to study the 

effect of molecular structure on both reaction kinetics and yield. Interestingly, we 

observed that plasmon-driven oxidative coupling of both 4-DMATP and 4-AATP into 

DMAB were also feasible though the significant difference in molecular strucutre of 4-

DMATP and 4-AATP in comparison to 4-ATP. Although similar reaction mechanism 

and pathway was observed for these three molecules, the reactivity toward oxidative 

coupling is drastically different. We conducted the photoreaction on these three 

molecules under identical experimental conditions, especially on the excitation of 785 nm 

laser with same laser power of 0.90 mW. As shown in Figure 6B, 4-ATP with two H 

groups exhibited the highest reaction yield among these three molecules, and 4-DMATP 

showed higher reaction yield and 4-AATP. To more quantitatively compare the reaction 

kinetics and yield, we used the as-proposed single exponential rate constant equation to 

obtain the rate constant k and reaction yield θt=∞ via fitting each reaction trajectories, 

which also showed very high quality of curve fitting. As shown in Figure 9.6C, 4-ATP 

showed the highest k and θt=∞ in comparison to 4-DMATP and 4-AATP, which might due 

to the weakest bonding energy of N-H, as well as the minimum of the steric hindrance 
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effect for 4-ATP. Moreover, 4-AATP exhibited lower k and θt=∞ than 4-DMATP, which 

can be attributed to the stability of local conjugation forming through the N-COCH3 and 

phenol conjugated ring. The trend of the photoreaction reactivity among 4-ATP, 4-

DMATP, and 4-AATP was further confirmed by conducting this experiment in another 

laser power of 0.56 mW. This experiment provides us to an unique opportunity to 

understand the photoreaction through correlating the experimental results with the 

proposed rate constant equation. Changing the reactivity of 4-ATP via molecular 

modification actually affects the k2 in the respect of reaction kinetics, and modulates the 

energy barrier of pre-activation of 4-ATP when the bonding situation is varying in the 

respect of reaction yield. While the detailed mechanism toward the effect of molecular 

structure on oxidative coupling of 4-ATP might be even more complicated, our 

experiment results on tuning the molecular structure of 4-ATP strongly supported the 

steady state reaction kinetics model and the concept of pre-activation of surface adsorbed 

molecular 4-ATP for plasmon-driven oxidative coupling reaction. 

We further carried out the laser power-dependent experiments on both 4-DMATP and 

4-AATP. It is interestingly to observe that the both reaction kinetics and yield can be 

modulated by varying the incident laser power for 4-DMATP and 4-AATP, which further 

confirmed our experimental findings on 4-ATP. As shown in Figure 9.6D,E,  both rate 

constant k and reaction yield θt=∞ increase as the initial Raman peak intensities of 4-

DMATP (I1082) increase when the incident laser power was fine-tuned from 0.32 mW to 

2.60 mW. Remarkably, we also found good linear correlation between k and I1082 at 

relatively low laser power, and the super linear deviation at relatively high laser power 

around 1.4 mW for 4-DMATP. As shown in Figure 9.6F,G, the super linear deviation of 
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k from linear relationship at relatively high laser power were further confirmed by the 

experimental results on 4-AATP, which might due to the enhanced photothermal effect. 

While similar results and correlation were also observed for 4-AATP, higher laser power 

is required for reaching the 100% photoreaction due to relatively stable of localized 

molecular conjugation system in 4-AATP. In a word, laser power-dependent 

experimental results further demonstrated our discovery that the plasmon-induced 

oxidative coupling of 4-ATP is driven by Landau damping due to the linear correlation 

between k and (E/E0)
4
. 

Remarkably, photothermal effect plays a key role in mediating plasmon-driven 

photoreaction because most of energetic hot electrons would undergo thermally 

dissipation to heat up the metal lattice via electron-phonon coupling.
41

 The pre-activation 

of surface adsorbed 4-ATP might be affected by the local heating due to the gradual 

enhanced photothermal effect when the laser power is increased. To investigate the 

photothermal effect on the reaction kinetics and yield, we collected the time-resolved 

SERS spectra with varying time intervals without changing other experimental conditions, 

which will allow the reaction substrates to be cooling down during the interval to 

minimize the local heating from photothermal effect. Interestingly, while only tiny 

difference were observed for 4-ATP with interval time of 0 s and 60 s when using laser 

power of 0.45 mW, obvious increase in both rate constant k and reaction yield θt=∞ were 

found when using laser power of 0.90 mW. The results can be attributed to the enhanced 

photothermally pre-activation of 4-ATP under laser power of 0.90 mW in comparison to 

0.45 mW, which is in very good agreement with our previous laser power-dependent 

experiments of 4-ATP. The super linear correlation is prominent under the laser power of 
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0.90 mW, however, linear correlation is still observed when the laser power is at 0.45 

mW. The photothermal effect can also result in the increase of Raman peak intensities via 

modifying the adsorption states or molecular orientation of 4-ATP, which has been 

previously reported.
42,43

 To gain more evidence on the effect photothermal annealing 

during the laser irradiation, we compared the SERS spectra of 4-ATP, 4-DMATP, and 4-

AATP at 0 s, and 60 s after laser irradiation in the presence of nitrogen gas. While no 

DMAB were observed for all three molecules, all their SERS peak intensities were 

significantly increased, ranging from 150% to 200% for the increasing percentage, 

clearly indicating the effect of photothermal annealing on the surface adsorbed molecules 

on Ag nanocubes. 

    To gain more new insights on the effect of photothermal annealing, we further 

investigated the effect of pre-thermal annealing on the surface adsorbed 4-ATP at 

molecule-nanoparticle interface via comparing initial SERS peak intensities, rate constant, 

and reaction yield of 4-ATP between without and with preheating samples for 60 min at 

90 °C. None of obvious modification to the spectral line shape of initial SERS spectra 

were found after the pre-thermal annealing, strongly demonstrating that no molecular 

damage were occurred to 4-ATP under our preheating experimental conditions. Moreover, 

SERS peak intensities were found to be increased after pre-thermal annealing, indicating 

that the adsorption states of surface adsorbed 4-ATP were modified by thermal annealing, 

which is line with the previous results from photothermal annealing. We moved forward 

to compare the reaction kinetics and yield of plasmon-driven oxidative coupling of 4-

ATP between without and with preheating (Figure 9.7). After being preheated, the initial 

SERS peak intensities, rate constant, and reaction yield were all significantly increased 
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under two different laser powers, which can be clearly observed from the data point 

distribution as shown in Figure 9.7. The experimental findings on 4-ATP can be further 

confirmed by experimental results from both 4-DMATP and 4-AATP. Thus, the 

photothermal and thermal annealing experiments strongly clarify the issues of super 

linear deviation of rate constant and varying reaction yield in laser power-dependent 

experiments. A concept of pre-activation of surface adsorbed 4-ATP were proposed to 

understand our experimental findings on the effect of laser power, photothermal, thermal 

annealing on this photoreaction. 

 

Figure 9.7. Effect of pre-thermal annealing on plasmon-driven oxidative coupling of 4-ATP. (A-

B) Plots of (A) rate constant (k), and (B) reaction yield (θt=∞) versus the initial peak intensities at 

1078 cm
-1

 (4-ATP) on the excitation of 785 nm laser with and without thermal pretreatment.  
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9.4 Conclusions 

In summary, we demonstrated our ability to tackle a couple of key questions toward the 

detailed mechanisms and reaction kinetics of plasmon-driven oxidative coupling of 4-

ATP (thiophenol-derivates):  

(1) What is the rate-limiting step and the reaction kinetics model?  

We proposed that the activation of surface adsorbed 4-ATP is the rate-limiting step in this 

photoreaction, and also the steady state kinetics behavior of active molecular O2, and 

thus, single exponential equation are used to fit this first order photoreaction.  

(2) What is the hot electron injection pathway: Landau damping or direct charge transfer?  

We demonstrated that plasmon-induced oxidative coupling of 4-ATP is driven by Landau 

damping based on the linear correlation between k and (E/E0)
4
.  

(3) What is the correlation between near electromagnetic field enhancement and reaction 

kinetics? 

We observed good linear relationship between near electromagnetic field enhancement 

(E/E0)
4 

and rate constant k at relatively low laser power, and the super linear deviation 

start to dominate at relatively high laser power due to enhanced photothermal effect. 

(4) The entangled role of photothermal/thermal effect?  

We proposed a novel concept of pre-activation of surface adsorbed 4-ATP to understand 

our experimental findings on the effect of laser power, photothermal, thermal annealing 

on this photoreaction. 

(5) The molecular structure effect of 4-ATP on this reaction? 
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We demonstrated that changing the reactivity of 4-ATP via modifying the molecular 

structure actually affects the rate constant of the rate-limiting step, that is, the activation 

of surface adsorbed 4-ATP, in the respect of reaction kinetics, and also modulating the 

energy barrier of pre-activation of 4-ATP when the bonding situation is varying in the 

respect of reaction yield. 

While the detailed mechanism might be even more complicated, our experimental 

findings strongly support our above discussion toward detailed mechanism and reaction 

kinetics model of plasmon-driven oxidative coupling of thiophenol-derivates. Our 

success in unraveling the detailed mechanisms and the role of steady state of active 

molecular oxygen species in plasmon-driven photoreaction would open up a new 

opportunities for wide investigations and applications of plasmonic metallic and 

semiconductor nanostructures as high-performance photocatalysts. 
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CHAPTER 10 

Plasmonic Hot Electron Driven Photocatalytic Reactions: New insights 

Gained from Plasmon-Enhanced Spectroscopic Studies
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10.1 Introduction 

Localized surface plasmon resonance (LSPR) generally refers to the collective 

oscillations of conduction electrons on surfaces of metallic nanoparticles.
1,2

 When a metal 

nanoparticle is excited to generate surface plasmons at its eigenfrequency upon light 

excitation, the incident light is both absorbed and scattered, giving rise to vivid colors. 

The unique features of LSPR can be well displayed by far-field extinction spectral feature 

and the near-field enhancement.
1,3

 The far-field extinction properties are measured by 

optical extinction spectroscopy to show the maximized excitation of surface plasmons at 

specific frequencies/wavelengths. Fine control over the size, shape, and composition of 

plasmonic nanoparticles allows one to achieve highly tunable optical extinction from 

UV-vis to near Infrared,
4-9

 leading to many interesting applications, such as, biomolecular 

sensing, photothermal cancer therapy, energy storage and conversion.
3,10-16

 On the other 

hand, the significant enhanced local electric field formed by collective oscillation of free 

electrons would greatly increase the molecular optical cross-section when molecules are 

adsorbed onto the surfaces of metallic nanoparticles.
1,11,13

 Particularly, the enhanced 

Raman scattering of surface-adsorbed molecules provides an unique opportunity for us to 

using surface-enhanced Raman spectroscopy (SERS) as in situ spectroscopic tool with 

unprecedented sensitivity to monitor the interfacial molecular transformation at 

nanoparticle-molecule interface.
9,17-24

 

After the excitation of plasmon resonance under light illumination, the energy 

transferred from light wave to plasmon resonance.
25

 Typically, There are three plasmon 

decay pathways:
25-28

 (1) Elastic radiative re-emission of photons, also known as 

scattering; (2) Landau damping: giving rise to the formation of energetic electrons and 
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holes pairs in the metal particle; (3) Chemical interface damping (CID): the interaction of 

excited surface plasmons with unpopulated adsorbate acceptor states, leading to the direct 

energetic electron injection into the adsorbate acceptor states. In contrast to CID pathway, 

if none of proper unpopulated adsorbate acceptor states are presented for electron 

injection, the energetic electrons generated through Landau damping (electron-phonon 

coupling) would undergo thermal dissipation process, resulting in local heating, also 

known as photothermal effect. While Landau damping and CID are intrinsically different 

mechanisms, both of them generate energetic electrons, also known as hot electrons, 

which can be probably harnessed for energy conversion and catalytic reaction.
29-34

 

Recently, It has been observed that the hot electrons generated through surface plasmon 

decay play a key role in guiding interesting photo-chemical reactions, such as 

photochromic reactions,
35

 photopolymerization,
36

 photo-reductive dimerization of 4-

nitrothiophenol (4-NTP),
37,38

 and oxidative coupling of 4-aminothiophenol (4-ATP).
39,40

 

Moreover, some important catalytic reactions, such as ethylene epoxidation,
29,41,42

 

dissociation of H2,
31

 styrene hydrogenation,
43

 and generation of H2 via water-splitting,
44

 

were also found to be either induced or enhanced by the plasmon-driven hot carriers 

injection into the surface molecular adsorbates upon exposure to light excitation. The 

mechanisms of plasmon-mediated photoreactions, however, still remain unclear. 

Therefore, it is imperative to gain quantitative insights into the kinetics and underlying 

pathways of these plasmon-mediated photoreactions to fully understand the obstacles that 

might limit the wide applications of plasmonic nanostructures as high-performance 

photocatalysts.  
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In this chapter, the plasmon-driven photo-reduction of 4-NTP were chosen as a model 

reaction to investigate the plasmonic effects on photoreactions. We used time-resolved 

surface-enhanced Raman spectroscopy (SERS) as an ultrasensitive spectroscopic tool 

with unique molecular finger-printing capabilities to monitor the photoreaction kinetics. 

A unique three-dimensional hierarchical nanostructure composed of a Fe3O4 bead 

decorated with Ag nanocubes (Fe3O4@Ag NC) was used as a plasmonically addressable 

substrate for SERS. We demonstrated that the reductive dimerization of 4-NTP to 4,4'-

dimercaptoazobenzene (DMAB) is a two-step reaction. The first step is the 

photothermally induced chemisorption process, which was experimentally observed as 

induction time. The second step involves the photo-reduced of 4-NTP by plasmon-

generated hot electrons, giving arise to the formation of DMAB. By correlating the 

reaction rates with local field enhancement, we were able to demonstrate that the 

reductive dimerization of 4-NTP to DMAB is driven by Landau damping mechanism 

instead of CID. The plasmon-associated local electromagnetic enhancement, which can 

be modulated by changing the laser power, and the density of Ag nanocubes on Fe3O4 

bead, was also found to be a key factor on the reaction kinetics and percentage. 

Furthermore, the peculiar role of active oxygen species in guiding the plasmon-driven 

photocatalytic reactions was also proposed and discussed in detail, allows us to reveal the 

underlying reaction mechanism. The knowledge gained through this work would add 

significant new insights on reaction kinetics and mechanisms of the plasmon-mediated 

photocatalytic reactions. 
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10.2 Experimental Section 

Chemicals and Materials. Ethylene glycol (EG) was obtained from VWR International. 

Poly(vinylpyrrolidone) (PVP58 with Mw~58000), Thiophenol (C6H6S, TP, 99+%), 4-

aminothiophenol (C6H7NS, 4-ATP, 97%), and 4-nitrothiophenol (C6H5NO2S, 4-NTP, 

80%) were all obtained from Alfa Aesar. Silver trifluoroacetate (  3   Ag, ≥99.99%), 

sodium hydrosulfide hydrate (NaHS·xH2O), hydrochloric acid (HCl, 37% in water), 

poly(diallyldimethylammonium chloride) (PDDA, 20%, w/w in water, Mw=200,000-

350,000), poly(4-vinylpyridine) (PVP, Mw~60,000), were all purchased from Sigma-

Aldrich. Fe3O4 beads (Dynabeads, carboxyl acid) were obtained from Life Technologies. 

Silica beads (SiO2) was obtained from nanoComposix. Hydrogen peroxide (H2O2, 30%), 

sulfuric acid (H2SO4, 96.10%), and ethanol (200 proof) were purchased from Fisher 

Scientific. Acetone was purchased from Honeywell. All reagents were used as received 

without further purification. Ultrapure water (18.2 MΩ resistivity, Barnstead  asyPure II 

7138) was used for all experiments. 

    Synthesis of Ag Nanocubes. Ag nanocubes were synthesized following same protocol 

as described in chapter 9. 

    Synthesis of Fe3O4@Ag Nanocubes Core-Satellite Particles. Fe3O4@Ag nanocubes 

hybrid particles were prepared via a layer-by-layer assembly approach.
45

 A colloidal 

suspension of Fe3O4 beads (10.0 mg/mL water) was added to 1 mL of PDDA solution 

(1%). After sonication for 30 min, the suspension was collected by sedimentation with 

the help of an external magnetic field and washed three times with pure water. 0.1 mL of 

the as-prepared Ag nanocubes was then added to the Fe3O4/PDDA nanocomposites under 

mechanical stirring for 1h. The final product was separated using an external magnetic 
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field and then redispersed in pure water. During this process, Ag nanocubes were 

attached to the surface of the Fe3O4/PDDA nanocomposites through electrostatic 

interactions. Then the products were removed from the solution by applying an external 

magnetic field. This process was repeated multiple times until the color of added Ag 

nanocubes no longer changed, indicating a saturating (High) coverage of Ag nanocubes 

on the PDDA-functionalized Fe3O4 beads. When PDDA-functionalized Fe3O4 beads were 

mixed with Ag nanocubes with various cycles, Fe3O4@Ag nanocubes hybrid particles 

with high, medium, and low coverages of Ag nanocubes were obtained. 

    Time-Resolved Single-Particle SERS Measurements. Sub-monolayer films of 

isolated Fe3O4@Ag nanocubes hybrid particles were prepared by immobilizing the 

particles onto PVP(polyvinylpyridine)-functionalized silicon substrates.
46

 In a typical 

procedure, silicon substrates were cleaned in a piranha solution (sulfuric acid : hydrogen 

peroxide, 7 : 3) for 15 min, and then immersed in a 1% wt. of PVP ethanolic solution for 

24 h. The silicon substrates were thoroughly rinsed with ethanol, dried with N2 gas before 

use. Fe3O4@Ag hybrid particles were incubated in 4-NTP solution with various 

concentrations for 1 h, and then washed with ethanol and dried with N2 gas. The 

molecular coverage were controlled by incubating Fe3O4@Ag hybrid particles in various 

concentration of 4-NTP (10 M, 50 M, 250 M, and 1 mM). Then the silicon substrate 

were immersed in an aqueous solution of Fe3O4@Ag hybrid particles for 1 h. The silicon 

substrates were thoroughly rinsed with ethanol and dried with N2 gas after they were 

removed from the solution of Fe3O4@Ag hybrid particles. The coverage of Fe3O4@Ag 

hybrid particles on the substrates can be controlled by changing the immersion time.  
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    Time-resolved SERS spectra were obtained on a Bayspec Nomadic
TM

 Raman 

microscopy built on an Olympus BX51 reflected optical system under 785 nm laser 

e citation in the confocal mode (focal area of 2 μm diameter). A 50× dark field objective 

(NA=0.5, WD=10.6 mm, Olympus LMPLFLN-BD) was used for both Raman signal 

collection and dark field scattering imaging. The laser beam was focused on one particle 

each time for Raman spectrum collection. The laser power focused on the samples was 

measured to be 620 W and the spectrum acquisition time was varied from 1 s to 30 s 

under most of conditions. For the laser power-dependant experiments, we tested the 

samples under various laser powers (240, 370, 620, and 790 W). The time-resolved 

SERS measurement on 4-ATP and TP were also done in the same way. The heating 

effect experiments were carried out by incubating the Fe3O4@Ag hybrid particles (silicon 

substrates) at 90 
o
C for 30 min. And then, the samples were measured after cooling down 

to room temperature. 

    Characterizations. The TEM images were obtained using a Hitachi H-8000 

transmission electron microscope operated at an accelerating voltage of 200 kV. All 

samples for TEM measurements were dispersed in water and drop-dried on 300 mesh 

Formvar/carbon-coated Cu grids. SEM and EDS measurements were performed using a 

Zeiss Ultraplus thermal field emission scanning electron microscope. The samples for 

SEM and EDS measurements were dispersed in water and drop-dried on silicon wafers. 

The optical extinction spectra of the nanoparticles were measured on aqueous colloidal 

suspensions at room temperature using a Beckman Coulter Du 640 spectrophotometer. ζ-

Potentials of colloidal nanoparticles were measured at room temperature using 

ZETASIZER nanoseries (Nano-ZS, Malvern). Raman spectra were obtained on a 
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Bayspec Nomadic
TM

 Raman microscopy built on an Olympus BX51 microscope 

equipped with a 785 nm CW diode laser. 

10.3 Results and Discussions 

We developed a layer-by-layer (LBL) assembly approach to fabricated the Fe3O4@Ag 

nanocubes hybrid particles. The plasmon coupling between the neighboring Ag 

nanocubes leads to the formation of plasmon “hot-spots” in the interparticle gaps where 

the local electric fields are drastically enhanced upon plasmonic excitation in the near-

IR.
3
 This LBL assembly approach allows us to fine-control the Ag nanocube coverage on 

each magnetic bead, providing a unique way to tune the density, size, and intensity of the 

plasmon “hot-spots” on the particle surfaces. As shown in Figure 10.1A, the Fe3O4@Ag 

hybrid particles were prepared through a stepwise LBL process. The surfaces of the as-

prepared Fe3O4 beads, which are terminated by carboxyl group, are negatively charged at 

neutral and basic pHs. A thin layer of polydiallyldim-ethylammonium chloride (PDDA) 

is then adsorbed onto the Fe3O4 surface to generate a positively charged particle surface. 

Since the Ag nanocubes are negatively charged, they can be attached onto the PDDA-

functionalized Fe3O4 beads through electrostatic interactions. Figure 10.1B shows the 

evolution of the ζ-potentials during the LBL assembly process. We used a combination of 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to 

fully characterize the Fe3O4@Ag nanocubes hybrid particles (Figure 10.1C-10.1J). Fe3O4 

magnetic beads of uniform size (~ 1 ± 0.1 μm) are used as the core on which Ag 

nanocubes (~ 36 ± 3.2  nm) are assembled electrostatically. More importantly, the 

coverage of Ag nanocubes, which determines the number and intensity of the 

electromagnetic hot spots, on the Fe3O4 beads can be fine-controlled by adjusting the 
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amount ratios between Ag nanocubes and Fe3O4 beads during the LBL assembly process 

(Figures 10.1C-10.1J). This method provides an unique approach for us to fabricate a 

dual-functional and plasmonically addressable core-satellite nanostructure, which can 

serve as plasmonic photocatalyst, as well as strong SERS substrate. 

We used time-resolved SERS to monitor the plasmon-mediated photochemical 

conversion of 4-NTP into DMAB that are adsorbed on the surface of Fe3O4@Ag hybrid 

particles. To form a self-assembled monolayer of 4-NTP on the nanoparticle surfaces, 

Fe3O4@Ag hybrid particles are first immersed in 4-NTP solution, then separated from the 

mixture in an external magnetic field, and finally dried on silicon substrates for SERS 

measurements. The plasmons of the Fe3O4@Ag NC particles are on resonance with the 

excitation laser (785 nm), which allows us to probe the photoreaction kinetics by 

collecting the time-resolved SERS spectra. As schematically illustrated in Figure 10.2A, 

the reductive dimerization of 4-NTP to DMAB was initiated upon exposure of the 4-

NTP-coated Fe3O4@Ag particle to 785 nm laser in ambient air at room temperature. 

Moreover, the confocal Raman microscope setup with a laser focal plane ∼2 μm × 2 μm 

in size, when combined with the sub-monolayer particle substrate geometry, allows us to 

collect SERS trajectories one-particle-at-a-time and subsequently build statistics on the 

reaction kinetics by analyzing the ensemble of large numbers of trajectories. 



www.manaraa.com

 

303 

 

Figure 10.1. (A) Schematic illustration of the fabrication process of Fe3O4 bead/PDDA/Ag 

nanocubes hybrid structures. (B) Evolution of ζ-potential during the layer-by-layer assembly 

process of Fe3O4/PDDA/Ag nanocubes particles. (C), (E), (G), (I) SEM images and (D), (F), (H), 

(J) TEM images of individual Fe3O4 bead, and Fe3O4/Ag-L, Fe3O4/Ag-M and Fe3O4/Ag-H 

particle. (Ag-L, M, and H represent the Low, Medium, and High coverage of Ag nanocubes on 

Fe3O4 bead) 

 

Figure 10.2B and 10.2E show the SERS spectra of 4-NTP monolayer molecules 

adsorbed on individual Fe3O4@Ag hybrid particle at various reaction times on the 

excitation of 785 nm laser of (B) 240 W, and (E) 790 W, respectively. The Raman 

bands at 1142, 1390 and 1438 cm
-1

 are assigned to DMAB, and the 1338 cm
-1

 mode is 

assigned to 4-NTP.
37,47-50

 As shown in Figure 10.2C and 10.2F, the ratios between Raman 

modes at 1438 cm
-1

 (N-N stretching mode of DMAB) and 1078 cm
-1

 (C-S stretching 

mode of 4-NTP and DMAB) modes were used as being representative of product grow 
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kinetics to quantify the fraction of DMAB (θDMAB), as a function of reaction time (t). We 

collected the time-resolved SERS spectra on 25 individual particles to build the statistical 

distribution (Figure 10.2D and 10.2G), in which way more reliable and definite 

conclusion can be draw when comparing the results in different experimental conditions, 

such as, varying laser power and coverage of Ag nanocubes. It is clearly to found that the 

reaction kinetics were greatly affected by the laser power, and more interestingly, two-

step reaction process were observed when the laser power is as low as 240 W (Figure 

10.2B). When using laser power of 240 W, no obvious Raman bands from DMAB were 

observed at the early stage after initiation of the photoreaction, however, the Raman 

intensity of 4-NTP was kept increasing. The Raman bands from DMAB started to 

become significantly much stronger as the reaction time reaching about 300 s. In contrast, 

the reaction was extremely fast when increasing the laser power to 790 W, that is, 

strong Raman bands of DMAB were observed at the very beginning of the reaction and 

no obvious two-step reaction were observed in this case. Our hypotheses on the two-step 

reaction are as following: 

(1)    )()( IINTP4INTP4 indt
  

(2)    DMAB21IINTP4
k

/)(  

Where the first step is the photothermally induced chemisorption process, which was 

experimentally observed as induction time (tind). The second step involves the photo-

reduced of 4-NTP by plasmon-generated hot electrons, giving arise to the formation of 

DMAB, defined as rate constant k. 4-NTP(I) and 4-NTP(II) refer to the 4-NTP molecule 

at different adsorption states, such as, varying bind sites and orientations. As shown in 
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Figure 10.2C and 10.2F, we further performed least-squares curve fitting to the θDMAB(t) 

and θ4-NTP(t) trajectories using the following rate equation: 

)(
))(( indttk

tDMAB e1


                   (1), 

))(( indttk
ttNTP4 e1


            (2), 

Where θDMAB and θ4-NTP are the fraction of reactant 4-NTP and product DMAB, 

respectively. tind is the induction time to express the first step reaction, and k is the first-

order rate constant to describe the second step reaction. Also θt=∞ is the reaction 

percentage, which is highly dependent on the experimental conditions, such as, laser 

power, coverage of Ag nanocubes, and coverage of 4-NTP molecules. 

 
 

Figure 10.2. Time-resolved SERS measurement of plasmon-mediated photoreaction kinetics. (A) 

Schematic illustration of the single-particle SERS setup (left panel) and plasmon-driven 

dimerization of 4-NTP on the surface of Ag nanocubes upon light excitation (right panel). (B,E) 

SERS spectra of 4-NTP monolayer molecules adsorbed on individual Fe3O4@Ag hybrid particle 
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at various reaction times on the excitation of 785 nm laser of 240 W (B), and 790 W (E). (C,F) 

The corresponding trajectories of θDMAB, θNTP, and θDMAB+θNTP as a function of reaction time 

under 785 nm laser of 240 W (C), and 790 W (F). The results of least-squares fitting are shown 

as solid curves. (D,G) All individual trajectories of θNTP, θDMAB , and the average fractions of 

θDMAB, θNTP, and θDMAB+θNTP as a function of reaction time under 785 nm laser of 240 W (D) and 

790 W (G) collected from each individual Fe3O4@Ag hybrid particle. 

 

 

In order to test our hypotheses on the two-step reaction, we moved one step back to 

work on thiophenol (TP), which has similar molecular structure as 4-NTP except for 

replacing nitro group with hydrogen group. The reason for choosing TP molecule is that 

we proposed that surface-adsorbed TP might undergo a similar photothermally induced 

chemisorption process as 4-NTP, but no subsequent dimerization would be observed. As 

shown in Figure 10.3A-C, we compared the Raman spectra of TP under varying 

conditions normal Raman, SERS, SERS after laser illumination. and SERS after thermal 

heating. None of obvious modification to the spectral line shape of initial SERS spectra 

were found after the laser illumination and thermal annealing, strongly demonstrating that 

none of molecular damage were occurred to 4-NTP under our pre-annealing conditions. 

Significant increase in SERS intensities were clearly observed in both SERS spectra after 

laser illumination and thermal heating in comparison to SERS spectra, strongly indicating 

the photothermal effect on TP molecule induced by laser illumination is well mimicked 

by thermal heating, resulting in similar modification to the SERS spectra, which is line 

with the previous results from photothermal annealing.
51

 More importantly, we also 

observed downshift to lower energy from two highlighted characteristic Raman bands of 

TP (1072 cm
-1

, C-S stretching mode, and 1578 cm
-1

, C-C stretching mode) in both SERS 

spectra after laser illumination and thermal heating comparing to SERS spectra. This 

provides strong evidence on multiple adsorption states of TP on surface of Ag 

nanoparticles are presented, and would be significantly affected by photothermal and 
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thermal treatment. While the detailed mechanism might be more complicated than we 

expected, our experimental results strongly demonstrated that the chemisorption states of 

molecules on the surface of metallic nanoparticles can be modulated by laser illumination 

induced photothermal effect, which can be also well mimicked by pre-thermal treatment. 

 

Figure 10.3. Multiple adsorption states of TP on the surface of Ag nanocubes upon thermal and 

photothermal treatment. (A-C) Normal Raman and SERS spectra of TP under varying conditions 

were shown for comparison. The 1080 cm
-1

 band  (B) and 1575 cm
-1

 band (C) were highlighted 

for observing the down shift of Raman band. (D) The molecular structure of TP and Ag3-TP with 

three different adsorption states in the DFT calculation. (E-G) Simulated normal Raman spectra 
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of TP and SERS spectra of Ag3-TP-i, ii, and iii. The 1080 cm
-1

 band  (F) and 1575 cm
-1

 band (G) 

were highlighted for observing the downshift of Raman band, which is in very good agreement 

with the experimental observation. 

 

We further carried out density functional theory (DFT) simulation to investigate the 

multiple adsorption states of TP on the surface of Ag nanocubes. Basically, we created a 

TP molecule, and then formed Ag-S bond between TP and a triangle Ag3 cluster. After 

optimization of bother energy and geometry of this cluster, we were able to obtain three 

adsorption states of Ag3-TP (marked as i, ii, iii) that have the lowest energy and are the 

most stable, as shown in Figure 10.3D. More importantly, downshift of Raman band from 

adsorption state iii to ii, and i were observed from the simulated SERS spectra (Figure 

10.3E-G), which is in very good agreement with our experimental observations. The 

downshift of Raman band from state iii to state i of lowest energy strongly demonstrate 

that TP undergo adsorption states change to become the most stable adsorption states on 

the surface of Ag nanocubes upon photothermal and thermal treatment. Our experimental 

findings and theoretical simulation results on TP provides strong evidence on our 

hypotheses that there are photothermal-induced chemisorption process of 4-NTP on the 

surface of Ag nanocubes before initiating the photoreaction.  

In contrast to TP, 4-NTP showed up shift of Raman bands (1338 cm
-1

, O-N-O 

stretching mode) upon thermal treatment, which might due to the significant difference in 

charge distribution between TP and 4-NTP (Figure 10.4A). Similar increase in SERS 

intensities were also observed from 4-NTP after thermal heating, which is in line with 

previous observations (Figure 10.4B).
51,52

 We further carried out the DFT simulation to 

investigate the multiple adsorption states of 4-NTP on the surface of Ag nanocubes using 
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the same approach as we did on TP. As shown in Figure 10.3C-D, up shift of Raman 

bands of 4-NTP-Ag3 from state iii to i were observed from the corresponding simulated 

SERS spectra, strongly demonstrating that 4-NTP undergo thermal induced 

chemisorption process from a more active state to the most stable state upon thermal 

treatment. To gain more evidence on the photothermal/thermal-induced pre-activation of 

4-NTP toward photoreaction, we compared the reaction kinetics and reaction percentage 

of 4-NTP-coated Fe3O4@Ag particles with and without pre-thermal annealing at the laser 

power of 240 W. It is interesting to found that the induction time period disappeared 

after we pre-thermal annealing the samples. Also both reaction kinetics and percentage 

increased in comparison to the samples without any pre-treatment. Although other 

surface-adsorbed conditions of molecule, such as, mobility and packing density, might be 

also affected by thermal treatment, our results clearly demonstrate the pre-activation of 4-

NTP toward photoreaction can be modulated by both photothermal effect and thermal 

annealing.  

Furthermore, we systematically investigated the effect of laser power on this 

photoreaction while keeping other experimental conditions the same. The increase in 

laser power would give rise to the significant enhancement of local electromagnetic field, 

expressed as E/E0, which is due to the correlation between laser power P and local 

electromagnetic field E is P∞ƐE
2
. Thus, when laser power is changing, the varying local 

electromagnetic field enhancement would have significant impact on the photoreaction 

kinetics via modulating the rate constant k. We performed the time-resolved SERS 

measurements under excitation at a series of different laser power to build the correlation 
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Figure 10.4. Multiple adsorption states of 4-NTP on the surface of Ag nanocubes upon thermal 

and photothermal treatment. (A) Normal Raman and SERS spectra of 4-NTP under varying 

conditions were shown for comparison. The 1080 cm
-1

, 1338 cm
-1

, and 1575 cm
-1

 band were 

marked with dashed line for observing the up shift of Raman band. (B) Histograms of Raman 

intensities of 1338 cm
-1

 (4-NTP) mode obtained from individual Fe3O4@Ag nanocubes particle 

under two different conditions: before heating and after heating. (C) Simulated SERS spectra of 

Ag3-4-NTP-i, ii, and iii. The up shift of Raman band can be clearly observed from state iii to state 

i, which is in very good agreement with the experimental observation. (D) The molecular 

structure of Ag3-4-NTP with three different adsorption states in the DFT calculation. 

 

between the excitation laser power and reaction kinetics/percentage. As shown in Figure 

10.5A, we plotted the rate constant (k) as a function of the initial Raman peak intensities 

at 1338 cm
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 of 4-NTP (I1338) on the excitation of 785 nm laser with various laser powers 
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of 0.24, 0.37, 0.62, and 0.79 mW. To address the underlying meaning of the as-plotted 

figures, we plotted the ensemble-averaged Raman peak intensities at 1338 cm
-1

 of 4-NTP 

(I1338) and ensemble-averaged rate constant (k) as a function of laser power square, as 

shown in the inset of Figure 4A. Remarkably, well-fitted linear relationship between I1338 

and laser power square was observed, when combined with the linear relationship 

between laser power and (E/E0)
2
, further demonstrating that the correlation between I1338 

and near field enhancement E/E0 is that, I1338∞ (E/E0)
4
. On the other hand, none of 

detailed information can be gained from the plots of ensemble-averaged rate constant (k) 

vs. laser power square. Therefore, we chose to employ the initial Raman peak intensities 

of 4-NTP (I1338) to quantify the near field enhancement E/E0 instead of laser power, when 

combined with statistical distribution on one-particle-at-a-time, clearly showing the 

detailed correlation between rate constant (k) and near field enhancement (E/E0) (Figure 

10.5A). We observed very good linear relationship between k and I1338 at relatively low 

laser power, and the super linear deviation start to dominate at relatively high laser power, 

as shown in Figure 10.5A. As it was previously demonstrated, the Raman peak intensities 

is proportional to the fourth power of near field enhancement ((E/E0)
4
), that is, 

I1338∞(E/E0)
4
. Therefore, linear correlation between k and I1338 from our experimental 

results strongly demonstrating that the relationship between rate constant (k) and near 

field enhancement (E/E0)
4
 is k∞(E/E0)

4
. The as-demonstrated well-fitted linear 

correlation between k and (E/E0)
4
 provide us an unique opportunity to explore the 

mechanism of plasmonic hot electron injection pathway that involved in this 

photoreaction. Two main mechanisms on plasmonic hot electron excitation were widely 

known as we discussed in the introduction part: Landau damping and chemical interface 
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damping (CID).
27,28,53

 A key difference between this two mechanisms is the correlation 

between rate constant k and near field enhancement E/E0, which would allow us to 

experimentally distinguish these two mechanisms though the underlying mechanisms 

might be much more complicated. k∞(E/E0)
4 

is found to be
  

Landau damping, and 

k∞(E/E0)
2 

is verified as CID due to their different photon absorption and scattering 

processes. Therefore, while the mechanism of the hot electron injection process on 

excited plasmonic nanostructures are still unclear and poorly understood, our 

experimental results strongly demonstrated that this photoreaction is driven by Landau 

damping rather than CID. Furthermore, the super linear deviation of k from linear 

relationship might possibly due to the significant enhanced photothermal effect at 

relatively high laser power.  

As shown in Figure 10.5B-C, the reaction percentage (θt=∞) increased at the beginning 

and then reaches at an equilibrium while the induction time (tind) significant decreased, 

and then became zero finally as the laser power gradually increased. The effects of laser 

power on both reaction percentage and induction time could be attributed to the enhanced 

photothermal-induced pre-activation of 4-NTP. For the reaction percentage, laser power 

dependent photothermal effect would induce the local heating near the surrounding of the 

adsorbed molecular 4-NTP, and further pre-activate 4-NTP toward accepting hot 

electrons to initiate the photo-reductive dimerization. Very recently, Takeyasu and co-

authors reported that a threshold value of laser power was observed for the photoreaction 

of 4-ATP to be initiated, which is in very good agreement with our experimental 

findings.
54

 On the other hand, the decrease in induction time can be also explained by the 

enhanced photothermal effect that significantly facilitated the chemisorption process of 4-
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NTP as the laser power increased. More interestingly, the photothermal effect can be also 

well mimicked by thermal treatment, which represents an unique way to optimization of 

the plasmon-driven photocatalytic process, as well as providing design principle for 

rational design of high performance plasmonic photocatalyst.  

 

Figure 10.5. Plots of (A) rate constant (k), (B) reaction percentage (θt=∞), and (C) induction time 

(tind) versus the initial peak intensities at 1338 cm
-1

 (4-NTP) on the excitation of 785 nm laser 

with various laser power of 240, 370, 620, and 790 W. The linear fitting result was shown as a 

solid line in panel A. The inset of panel A shows the initial peak intensities at 1338 cm
-1

 (upper 

panel) and rate constant k (down panel) as function of laser power square. The tested sample is 

Fe3O4@Ag nanocubes particle with medium coverage. The concentration of incubated 4-NTP 

solution is 1.0 mM. 
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Another way to modulate the local electromagnetic field enhancement is the control 

over the coverage of Ag nanocubes on the Fe3O4 bead, which would allow us to study the 

effects of density of plasmonic hot-spots (local electromagnetic field enhancement) on 

the photoreaction kinetics and percentage. As shown in Figure 10.6A-C, Fe3O4/Ag 

particles with three different Ag nanocubes coverage (Ag-L, M, and H represent the Low, 

Medium, and High coverage of Ag nanocubes on Fe3O4 bead) were fabricated through 

simply adjusting the amount of Ag nanocubes that used in the assembly process. 

Increasing in the coverage of Ag nanocubes on the surface of individual Fe3O4 bead 

would result in increasing the density of hotspots, as well as smaller interparticle gaps 

with larger local field enhancements.
3
 As shown in Figure 10.6C, the SERS intensities 

were significantly increased as the coverage of Ag nanocubes increased, indicating the 

enhanced local field enhancement as well as the increase in the amount of 4-NTP 

molecules. While both rate constant and reaction percentage increased when the coverage 

of Ag nanocubes changed from low to medium, slight decrease were observed as the Ag 

nanocubes were further increased to high coverage. The abnormal results, however, can 

be possibly interpreted by the steric hindrance effect during this dimerization reaction. As 

the coverage of Ag nanocubes increased, the interparticle gap between each nanocubes 

would become extremely small, which might not be able to provide enough space for two 

4-NTP molecules to change their orientations and then formed a DMAB molecule. 

Although none of direct evidence were provided to support our hypotheses, we firmly 

believed this is the possible reason considering the decreasing in reaction kinetics and 

percentage at high coverage of Ag nanocubes. Moreover, we investigated the effects of 

the coverage of 4-NTP on the plasmon-mediated photoreaction by systematically 
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adjusting the 4-NTP concentration in the molecular pre-adsorption step. Our hypotheses 

is that the formation of DMAB on the surface requires two reduced 4-NTP molecules 

with appropriate orientations and intermolecular distances to interact with each other to 

form the dimer structure. It is interestingly to observe that both the rate constant and 

reaction percentage decreased as the coverage of 4-NTP gradually reduced. In contrast to 

rate constant, the reaction percentage showed much more dependent on the coverage of 

4-NTP, which might due to the large intermolecular distance would make it extremely 

difficult for molecules to move to a close distance to react. 
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Figure 10.6. Effects of the coverage of Ag nanocubes on the plasmon-mediated photoreaction. 

(A-C) SEM images of (A) Fe3O4/Ag-L, (B) Fe3O4/Ag-M, and (C) Fe3O4/Ag-H particle. (D) Plots 

of rate constant (k), reaction percentage (θt=∞), and induction time (tind) versus the initial peak 

intensities at 1338 cm
-1

 (4-NTP) on the excitation of 785 nm laser with laser power of 620 W. 

The concentration of incubated 4-NTP is 1mM. (Ag-L, M, and H represent the Low, Medium, 

and High coverage of Ag nanocubes on Fe3O4 bead) 

 

    To further investigate the underlying mechanism of this reductive dimerization of 4-

NP in ambient air condition, we carried out a couple of control experiments to test the 

possible components from air that was involved into this photoreaction. Nitrogen gas was 

firstly rule out by conducting the photoreaction in pure nitrogen gas flow system, none of 

DMAB were observed. When quickly switching the surrounding gas from nitrogen to air, 

the characteristic SERS peaks of DMAB starts to dominate the SERS spectra. Secondly, 

we demonstrated that water species is not involved in this reaction by immersing the 

sample in water solution, and only a little amount of DMAB were obtained even when we 

further increased the laser power. Then, we decided to carried out this experiment under 

pure oxygen gas though this photoreaction is a reductive dimerization reaction. 

Surprisingly, we observed the formation of DMAB under pure oxygen gas, and both the 

reaction percentage and kinetics is comparable to those of ambient air condition. The 

interesting point is that why we need oxygen in this reductive dimerization reaction. 

Although no direct evidence can be provide at this point, we do have a hypothesis on the 

mechanism of oxygen-mediated reductive dimerization. As shown in Figure 10.7A, the 

excitation of hot electrons would be able to inject into the LUMO of 4-NTP to initiate the 

photoreaction through a Landau damping pathway. Then, the hot holes remaining on the 

surface of Ag nanocubes would be consumed by donation of electron from surface 

physisorbed oxygen, which could greatly facilitate the excitation of hot electrons and 
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holes to drive this photoreaction. However, at first look at the energy diagram, the huge 

energetic gap between HOMO of physisorbed oxygen and Fermi level of Ag make the 

donation of electron from oxygen become impossible. To further explore the possibility, 

we carried out the DFT simulation on the effect of interaction between oxygen and Ag 

cluster on the modulation of HOMO of oxygen. As shown in Figure 10.7B, the HOMO of 

oxygen could be gradually modulated as the interaction between oxygen and Ag cluster 

enhanced (varying size and orientation of Ag cluster). The HOMO of oxygen became 

comparable to the Fermi level of Ag when the oxygen is attached onto the big Ag cluster, 

which well mimicked the surface of Ag nanocubes. This simulation results provide strong 

evidence on the possibility of donation of electrons from oxygen to consume the hot 

holes on the surface of Ag nanocubes, which further drive the plasmon-driven 

photoreaction. 

 

 

Figure 10.7. (A) Schematic illustration of plasmonic hot carriers driven photoreduction of 4-NTP 

assisted by O2 upon light illumination. The hot electrons were injected into the LUMO of 4-NTP, 
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and the hot holes were accepted by the physisorbed O2 on the surface of Ag nanocubes. (B) The 

HOMO energy level of physisorbed O2 under different chemical environments (varying size and 

orientation of Ag clusters.) when approaching to the Ag surfaces.  

 

    Based on our experimental findings and theoretical results, we proposed the possible 

underlying mechanism of the plasmonic hot carriers driven reductive dimerization of 4-

NTP into DMAB assisted by O2 upon light illumination, as shown in Figure 10.8. Firstly, 

the hot electrons/holes were generated on the surface of Ag nanocubes through plasmon 

decay, and also the 4-NTP undergo photothermal-induced chemisorption process upon 

laser illumination; Secondly, hot electrons would inject into the LUMO of 4-NTP via 

Landau damping process to reduce the 4-NTP while the hot holes could be accepted by 

surface adsorbed oxygen species; Thirdly, transient intermediates of 4-NTP anionic 

species and oxygen cationic species were presented on the surfaces of Ag nanocubes; 

Fourthly, two of 4-NTP ionic species would undergo a dimerization process to form 

DMAB and at the same time produce oxygen anionic species; Finally, the oxygen 

cationic species and oxygen anionic species would combine to re-produce oxygen species 

on the surfaces of Ag nanocubes. While the detailed mechanism might be even more 

complicated, our experimental findings strongly support our above discussion toward 

detailed mechanism and reaction kinetics model of plasmon-driven reductive 

dimerization of 4-NTP.  
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Figure 10.8. Schematic illustration of the proposed mechanism for plasmonic hot carriers driven 

photoreduction of 4-NTP into DMAB assisted by O2 upon light illumination.  

 

10.4 Conclusions 

In summary, we demonstrated that plasmonic hot carriers driven photo-reductive 

dimerization of 4-NTP to DMAB assisted by oxygen is a two-step reaction. The first step 

is the chemisorption process of 4-NTP of the surfaces of Ag nanocubes due to the 

photothermal effect, which could be also well mimicked by thermal annealing. The 

second step involves the photo-reduced of 4-NTP by plasmon-generated hot electrons, 

giving arise to the formation of DMAB. Remarkably, we demonstrated that the reductive 

dimerization of 4-NTP is driven by hot carriers generated through Landau damping 

process according to the correlation between reaction rates and local field enhancement. 

Furthermore, the physisorbed oxygen species on the surface of Ag nanocubes were found 

to be play a key role in catalyzing the plasmon-driven photocatalytic reactions via 

consuming the hot holes, which allows us to completely unravel the underlying reaction 

mechanisms. The knowledge gained through this work would open up an unique 
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opportunity for wide investigations and applications of plasmonic metallic nanostructures 

as high-performance catalysts and photocatalysts. 
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